142
Views
0
CrossRef citations to date
0
Altmetric
BIOSENSORS

Label-Free Fluorescent Determination of Lead (II) Using DNAzyme and Thiazole Orange

, , , , &
Pages 1577-1591 | Received 07 Jul 2022, Accepted 01 Nov 2022, Published online: 10 Nov 2022

References

  • Bansod, B., T. Kumar, R. Thakur, S. Rana, and I. Singh. 2017. A review on various electrochemical techniques for heavy metal ions detection with different sensing platforms. Biosensors & Bioelectronics 94:443–55. doi:10.1016/j.bios.2017.03.031.
  • Bazin, I., S. A. Tria, A. Hayat, and J. L. Marty. 2017. New biorecognition molecules in biosensors for the detection of toxins. Biosensors & Bioelectronics 87:285–98. doi:10.1016/j.bios.2016.06.083.
  • Brown, A. K., J. Li, C. M. Pavot, and Y. Lu. 2003. A lead-dependent DNAzyme with a two-step mechanism. Biochemistry 42 (23):7152–61. doi:10.1021/bi027332w.
  • Diao, W., G. Wang, L. Wang, L. Zhang, S. Ding, T. Takarada, M. Maeda, and X. Liang. 2020. Opposite effects of flexible single-stranded DNA regions and rigid loops in DNAzyme on colloidal nanoparticle stability for “turn-on” plasmonic detection of lead ions. ACS Applied Bio Materials 3 (10):7003–10. doi:10.1021/acsabm.0c00873.
  • Guo, Y., J. T. Li, X. Q. Zhang, and Y. L. Tang. 2015. A sensitive biosensor with a DNAzyme for lead (II) detection based on fluorescence turn-on. The Analyst 140 (13):4642–7. doi:10.1039/c5an00677e.
  • He, Y. L., J. N. Tian, J. N. Zhang, S. Chen, Y. X. Jiang, K. Hu, Y. C. Zhao, and S. L. Zhao. 2014. DNAzyme self-assembled gold nanorods-based FRET or polarization assay for ultrasensitive and selective detection of copper (II) ion. Biosensors & Bioelectronics 55:285–8. doi:10.1016/j.bios.2013.12.032.
  • Hollenstein, M., C. Hipolito, C. Lam, D. Dietrich, and D. M. Perrin. 2008. A highly selective DNAzyme sensor for mercuric ions. Angewandte Chemie 47 (23):4346–50. doi:10.1002/anie.200800960.
  • Huo, B. Y., Y. L. Hu, Z. X. Gao, and G. K. Li. 2021. Recent advances on functional nucleic acid-based biosensors for detection of food contaminants. Talanta 222:121565. doi:10.1016/j.talanta.2020.121565.
  • Izah, S. C., N. Chakrabarty, and A. L. Srivastav. 2016. A review on heavy metal concentration in potable water sources in Nigeria: Human health effects and mitigating measures. Exposure and Health 8 (2):285–304. doi:10.1007/s12403-016-0195-9.
  • Kypr, J., I. Kejnovska, D. Renciuk, and M. Vorlickova. 2009. Circular dichroism and conformational polymorphism of DNA. Nucleic Acids Research 37 (6):1713–25. doi:10.1093/nar/gkp026.
  • Li, J., and Y. Lu. 2000. A highly sensitive and selective catalytic DNA biosensor for lead ions. Journal of the American Chemical Society 122 (42):10466–7. doi:10.1021/ja0021316.
  • Li, S. T., L. J. Zhu, G. S. Li, Z. H. Du, J. J. Tian, Y. B. Luo, K. L. Huang, and W. T. Xu. 2019. A “turn-off” ultra-sensitive fluorescent quantitative biosensor driven by zinc ion DNAzyme. Sensors and Actuators B: Chemical 285:173–8. doi:10.1016/j.snb.2019.01.019.
  • Li, W. Y., Y. Yang, J. Chen, Q. F. Zhang, Y. Wang, F. Y. Wang, and C. Yu. 2014. Detection of lead (II) ions with a DNAzyme and isothermal strand displacement signal amplification. Biosensors & Bioelectronics 53:245–9. doi:10.1016/j.bios.2013.09.055.
  • Liang, M. M., X. R. Liu, K. Nakamura, X. J. Chen, D. F. Cheng, G. Z. Liu, S. P. Dou, Y. Wang, M. Rusckowski, and D. J. Hnatowich. 2009. A convenient thiazole orange fluorescence assay for the evaluation of DNA duplex hybridization stability. Molecular Imaging and Biology 11 (6):439–45. doi:10.1007/s11307-009-0221-4.
  • Liu, H., X. Yu, Y. Chen, J. Zhang, B. Wu, L. Zheng, P. Haruehanroengra, R. Wang, S. L. J. Lin, J. L. J. Sheng, et al. 2017. Crystal structure of an RNA-cleaving DNAzyme. Nature Communications 8 (1):2006–10. doi:10.1038/s41467-017-02203-x.
  • Liu, J. W., and Y. Lu. 2004. Accelerated color change of gold nanoparticles assembled by DNAzymes for simple and fast colorimetric Pb2+ detection. Journal of the American Chemical Society 126 (39):12298–305. doi:10.1021/ja046628h.
  • Lu, Q., Z. Zhou, Y. Mei, W. Wei, and S. Liu. 2013. Detection of DNA damage by thiazole orange fluorescence probe assisted with exonuclease III. Talanta 116:958–63. doi:10.1016/j.talanta.2013.07.038.
  • Lu, W., C. Q. Lin, J. Yang, X. Q. Wang, B. Yao, and M. Wang. 2019. A DNAzyme assay coupled with effective magnetic separation and rolling circle amplification for detection of lead cations with a smartphone camera. Analytical and Bioanalytical Chemistry 411 (21):5383–91. doi:10.1007/s00216-019-01879-y.
  • Lu, Y. 2002. New transition-metal-dependent DNAzymes as efficient endonucleases and as selective metal biosensors. Chemistry – A European Journal 8 (20):4588–96. doi:10.1002/1521-3765(20021018)8:20<4588::AID-CHEM4588>3.0.CO;2-Q.
  • Luo, Y., Y. Zhang, L. Xu, L. Wang, G. Wen, A. Liang, and Z. Jiang. 2012. Colorimetric sensing of trace UO2(2+) by using nanogold-seeded nucleation amplification and label-free DNAzyme cleavage reaction. The Analyst 137 (8):1866–71. doi:10.1039/c2an00039c.
  • Memon, A. G., X. H. Zhou, Y. P. Xing, R. Y. Wang, L. H. Liu, M. Khan, and M. He. 2019. Label-free colorimetric nanosensor with improved sensitivity for Pb2+ in water by using a truncated 8-17 DNAzyme. Frontiers of Environmental Science & Engineering 13 (1):12. doi:10.1007/s11783-019-1094-7.
  • Monchaud, D., C. Allain, and M. P. Teulade-Fichou. 2007. Thiazole orange: A useful probe for fluorescence sensing of G-quadruplex-ligand interactions. Nucleosides, Nucleotides & Nucleic Acids 26 (10-12):1585–8. doi:10.1080/15257770701548212.
  • Nelson, K. E., H. E. Ihms, D. Mazumdar, P. J. Bruesehoff, and Y. Lu. 2012. The importance of peripheral sequences in determining the metal selectivity of an in vitro-selected Co(2+)-dependent DNAzyme. Chembiochem 13 (3):381–91. doi:10.1002/cbic.201100724.
  • Nygren, J., N. Svanvik, and M. Kubista. 1998. The interactions between the fluorescent dye thiazole orange and DNA. Biopolymers 46 (1):39–51. doi:10.1002/(SICI)1097-0282(199807)46:1 < 39::AID-BIP4 > 3.0.CO;2-Z.
  • Ochsenkuhn-Petropoulou, M., and K. M. Ochsenkuhn. 2001. Comparison of inductively coupled plasma-atomic emission spectrometry, anodic stripping voltammetry and instrumental neutron-activation analysis for the determination of heavy metals in airborne particulate matter. Fresenius Journal of Analytical Chemistry 369 (7-8):629–32. doi:10.1007/s002160100769.
  • Pan, J. F., Q. Li, D. H. Zhou, and J. H. Chen. 2019. Label-free and highly sensitive fluorescence detection of lead (II) based on DNAzyme and exonuclease III-assisted cascade signal amplification. New Journal of Chemistry 43 (15):5857–62. doi:10.1039/C8NJ06522E.
  • Pan, L., Y. Huang, C. C. Wen, and S. L. Zhao. 2013. Label-free fluorescence probe based on structure switching aptamer for the detection of interferon gamma. The Analyst 138 (22):6811–6. doi:10.1039/c3an01275a.
  • Pohl, P. 2009. Determination of metal content in honey by atomic absorption and emission spectrometries. TrAC-Trends in Analytical Chemistry 28 (1):117–28. doi:10.1016/j.trac.2008.09.015.
  • Ravikumar, A., P. Panneerselvam, K. Radhakrishnan, N. Morad, C. D. Anuradha, and S. Sivanesan. 2017. DNAzyme based amplified biosensor on ultrasensitive fluorescence detection of Pb (II) ions from aqueous system. Journal of Fluorescence 27 (6):2101–9. doi:10.1007/s10895-017-2149-4.
  • Shomali, Z., M. Kompany-Zareh, and N. Omidikia. 2019. Fluorescence based investigation of temperature-dependent Pb2+-specific 8-17E DNAzyme catalytic sensor. Journal of Fluorescence 29 (2):335–42. doi:10.1007/s10895-019-02346-8.
  • Song, X. L., Y. Wang, S. Liu, X. Zhang, J. F. Wang, H. W. Wang, F. F. Zhang, J. H. Yu, and J. D. Huang. 2019. A triply amplified electrochemical lead (II) sensor by using a DNAzyme and via formation of a DNA-gold nanoparticle network induced by a catalytic hairpin assembly. Mikrochimica Acta 186 (8):559–10. Doi: 10.1007/s00604-019-3612-5.
  • Sun, C., R. Su, J. Bie, H. Sun, S. Qiao, X. Ma, R. Sun, and T. Zhang. 2018. Label-free fluorescent sensor based on aptamer and thiazole orange for the detection of tetracycline. Dyes and Pigments 149:867–75. doi:10.1016/j.dyepig.2017.11.031.
  • Tan, Y., J. Z. Qiu, M. Y. Cui, X. F. Wei, M. M. Zhao, B. Qiu, and G. N. Chen. 2016. An immobilization free DNAzyme based electrochemical biosensor for lead determination. The Analyst 141 (3):1121–6. doi:10.1039/c5an02114f.
  • Tang, S. R., W. Lu, F. Gu, P. Tong, Z. M. Yan, and L. Zhang. 2014. A novel electrochemical sensor for lead ion based on cascade DNA and quantum dots amplification. Electrochimica Acta 134:1–7. doi:10.1016/j.electacta.2014.04.021.
  • Vu, H. D., L. H. Nguyen, T. D. Nguyen, H. B. Nguyen, T. L. Nguyen, and D. L. Tran. 2015. Anodic stripping voltammetric determination of Cd2+ and Pb2+ using interpenetrated MWCNT/P1,5-DAN as an enhanced sensing interface. Ionics 21 (2):571–8. doi:10.1007/s11581-014-1199-8.
  • Wan, Z., Z. R. Xu, and J. H. Wang. 2006. Flow injection on-line solid phase extraction for ultra-trace lead screening with hydride generation atomic fluorescence spectrometry. The Analyst 131 (1):141–7. doi:10.1039/b511829h.
  • Wang, F., J. Y. Dai, H. L. Shi, X. Q. Luo, L. Xiao, C. S. Zhou, Y. Guo, and D. Xiao. 2020. A rapid and colorimetric biosensor based on GR-5 DNAzyme and self-replicating catalyzed hairpin assembly for lead detection. Analytical Methods 12 (17):2215–20. doi:10.1039/D0AY00091D.
  • Wang, H., Z. K. Wu, B. B. Chen, M. He, and B. Hu. 2015. Chip-based array magnetic solid phase microextraction on-line coupled with inductively coupled plasma mass spectrometry for the determination of trace heavy metals in cells. The Analyst 140 (16):5619–26. doi:10.1039/c5an00736d.
  • Wang, J. L., S. H. Chen, R. Yuan, and F. X. Hu. 2020. DNA branched junctions induced the enhanced fluorescence recovery of FAM-labeled probes on rGO for detecting Pb2+. Analytical and Bioanalytical Chemistry 412 (11):2455–63. doi:10.1007/s00216-020-02458-2.
  • Wang, J., Z. Y. Zhang, X. Gao, X. D. Lin, Y. Q. Liu, and S. Wang. 2019. A single fluorophore ratiometric nanosensor based on dual-emission DNA-templated silver nanoclusters for ultrasensitive and selective Pb2+ detection. Sensors and Actuators B: Chemical 282:712–8. doi:10.1016/j.snb.2018.11.121.
  • Wang, W., L. P. Billen, and Y. F. Li. 2002. Sequence diversity, metal specificity, and catalytic proficiency of metal-dependent phosphorylating DNA enzymes. Chemistry & Biology 9 (4):507–17. doi:10.1016/S1074-5521(02)00127-8.
  • Wang, X. Y., C. G. Niu, L. J. Guo, L. Y. Hu, S. Q. Wu, G. M. Zeng, and F. Li. 2017. A fluorescent sensor for lead (II) ions determination based on label-free gold nanoparticles (GNPs)-DNAzyme using time-gated mode in aqueous solution. Journal of Fluorescence 27 (2):643–9. doi:10.1007/s10895-016-1993-y.
  • Wang, Y. L., and J. Irudayaraj. 2011. A SERS DNAzyme biosensor for lead ion detection. Chemical Communications 47 (15):4394–6. doi:10.1039/c0cc04140h.
  • Yang, D. X., X. C. Liu, Y. Y. Zhou, L. Luo, J. C. Zhang, A. Q. Huang, Q. M. Mao, X. Chen, and L. Tang. 2017. Aptamer-based biosensors for detection of lead (II) ion: A review. Analytical Methods 9 (13):1976–90. doi:10.1039/C7AY00477J.
  • Yang, Y. J., W. X. Li, and J. W. Liu. 2021. Review of recent progress on DNA-based biosensors for Pb2+ detection. Analytica Chimica Acta 1147:124–43. doi:10.1016/j.aca.2020.12.056.
  • Yildirim, N., F. Long, M. He, C. Gao, H. C. Shi, and A. Z. Gu. 2014. A portable DNAzyme-based optical biosensor for highly sensitive and selective detection of lead (II) in water sample. Talanta 129:617–22. doi:10.1016/j.talanta.2014.03.062.
  • Zhang, Q. L., H. X. Cui, X. L. Xiong, J. Chen, Y. Wang, J. Shen, Y. T. Luo, and L. C. Chen. 2018. QCM-nanomagnetic beads biosensor for lead ion detection. The Analyst 143 (2):549–54. doi:10.1039/c7an01498h.
  • Zheng, J., J. L. Wai, R. J. Lake, S. Y. New, Z. K. He, and Y. Lu. 2021. DNAzyme sensor uses chemiluminescence resonance energy transfer for rapid, portable, and ratiometric detection of metal ions. Analytical Chemistry 93 (31):10834–40. doi:10.1021/acs.analchem.1c01077.
  • Zhou, Y. Y., L. Tang, G. M. Zeng, C. Zhang, Y. Zhangand, and X. Xie. 2016. Current progress in biosensors for heavy metal ions based on DNAzymes/DNA molecules functionalized nanostructures: A review. Sensors and Actuators B: Chemical 223:280–94. doi:10.1016/j.snb.2015.09.090.
  • Zhuang, J. Y., L. B. Fu, M. D. Xu, Q. Zhou, G. N. Chen, and D. P. Tang. 2013. DNAzyme-based magneto-controlled electronic switch for picomolar detection of lead (II) coupling with DNA-based hybridization chain reaction. Biosensors & Bioelectronics 45:52–7. doi:10.1016/j.bios.2013.01.039.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.