248
Views
5
CrossRef citations to date
0
Altmetric
Sample Preparation

Development and Factorial Experimental Design Optimization of Deep Eutectic Solvent‐Based Microextraction of Carmoisine (E122) in Candy and Water Samples

, ORCID Icon &
Pages 2172-2181 | Received 06 Nov 2022, Accepted 09 Dec 2022, Published online: 19 Dec 2022

References

  • Amraei, A., A. Niazi, M. Alimoradi, and M. Hosseini. 2019. Cloud point extraction and simultaneous spectrophotometric determination of allura red and carmoisine using wavelet orthogonal signal correction–partial least squares method. Journal of Analytical Chemistry 74 (2):93–9. doi:10.1134/S1061934819020023.
  • Arain, M. B., E. Yilmaz, and M. Soylak. 2016. Deep eutectic solvent based ultrasonic assisted liquid phase microextraction for the faas determination of cobalt. Journal of Molecular Liquids 224:538–43. doi:10.1016/j.molliq.2016.10.005.
  • Aydin, F., E. Yilmaz, and M. Soylak. 2017. A simple and novel deep eutectic solvent based ultrasound-assisted emulsification liquid phase microextraction method for malachite green in farmed and ornamental aquarium fish water samples. Microchemical Journal 132:280–5. doi:10.1016/j.microc.2017.02.014.
  • Barrera, H., J. Cruz-Olivares, B. A. Frontana-Uribe, A. Gómez-Díaz, P. G. Reyes-Romero, and C. E. Barrera-Diaz. 2020. Electro-oxidation-plasma treatment for azo dye carmoisine (acid red 14) in an aqueous solution. Materials 13 (6):1463. doi:10.3390/ma13061463.
  • Bijad, M., H. Karimi-Maleh, M. Farsi, and S. A. Shahidi. 2018. An electrochemical-amplified-platform based on the nanostructure voltammetric sensor for the determination of carmoisine in the presence of tartrazine in dried fruit and soft drink samples. Journal of Food Measurement and Characterization 12 (1):634–40. doi:10.1007/s11694-017-9676-1.
  • Bousalah, D., A. R. Yeddou, M. Hachemi, A. Chergui, and B. Nadjemi. 2021. Oxidation of azo dye carmoisine (E122) in aqueous solution by heterogeneous catalyst CuO/Al2O3system. Environmental Engineering and Management Journal 20 (2):167–75. doi:10.30638/eemj.2021.017.
  • Chebotarev, A. N., K. V. Pliuta, and D. V. Snigur. 2020. Determination of carmoisine onto carbon-paste electrode modified by silica ımpregnated with cetylpyridinium chloride. ChemistrySelect 5 (12):3688–93. doi:10.1002/slct.202000518.
  • Elci, L., M. Soylak, A. Uzun, E. Büyükpatır, and M. Doğan. 2000. Determination of trace ımpurities in some nickel compounds by flame atomic absorption spectrometry after solid phase extraction using amberlite XAD-16 resin. Fresenius’ Journal of Analytical Chemistry 368 (4):358–61. doi:10.1007/s002160000448.
  • Farsaani, D. J., and E. Ameri. 2022. Effect of sodium dodecyl sulfate on CO2 and H2S absorption enhancement of functionalized multiwall carbon nanotubes in water: Experimental study and empirical model. Arabian Journal of Chemistry 15 (12):104314. doi:10.1016/j.arabjc.2022.104314.
  • Ghasempour, Z., M. Alizadeh-Khaledabad, M. R. Vardast, and M. Rezazad-Bari. 2017. Synthesis of a molecularly ımprinted polymer for the selective recognition of carmoisine (Azorubin E122) from pomegranate juice. Journal of Separation Science 40 (4):962–70. doi:10.1002/jssc.201600855.
  • Karatepe, A., Ç. Akalin, and M. Soylak. 2017. Spectrophotometric determination of carmoisine after cloud point extraction using Triton X-114. Turkısh Journal of Chemıstry 41 (2):256–62. doi:10.3906/kim-1606-45.
  • Karatepe, A., M. Soylak, and L. Elçi. 2011. Solid-phase extraction of some heavy metal ıons on a double-walled carbon nanotube disk and determination by flame atomic absorption spectrometry. Journal of AOAC International 94 (5):1617–24. doi:10.5740/jaoacint.10-388.
  • Kiayi, Z., T. B. Lotfabad, A. Heidarinasab, and F. Shahcheraghi. 2019. Microbial degradation of azo dye carmoisine in aqueous medium using Saccharomyces cerevisiae ATCC 9763. Journal of Hazardous Materials 373:608–19. doi:10.1016/j.jhazmat.2019.03.111.
  • Lipskikh, O. I., E. I. Korotkova, E. V. Dorozhko, K. V. Derina, and O. A. Voronova. 2017. Voltammetric determination of carmoisine in soft drinks. Inorganic Materials 53 (14):1427–31. doi:10.1134/S0020168517140114.
  • Lipskikh, O. I., E. I. Korotkova, Y. P. Khristunova, J. Barek, and B. Kratochvil. 2018. Sensors for voltammetric determination of food azo dyes – A critical review. Electrochimica Acta 260:974–85. doi:10.1016/j.electacta.2017.12.027.
  • Lyskovtseva, K. A., G. B. Eldyaeva, S. V. Smirnova, and I. V. Pletnev. 2022. Extraction and determination of synthetic food dyes in an aqueous biphasic system based on tetrabutylammonium bromide. Journal of Analytical Chemistry 77 (10):1236–46. doi:10.1134/S1061934822100100.
  • Micheletti, L., B. Coldibeli, C. A. R. Salamanca-Neto, L. C. Almeida, and E. R. Sartori. 2020. Assessment of the use of boron-doped diamond electrode for highly sensitive voltammetric determination of the azo-dye carmoisine E − 122 in food and environmental matrices. Talanta 220:121417. doi:10.1016/j.talanta.2020.121417.
  • Monajemzadeh, F., A. Mohebbi, M. A. Farajzadeh, M. Nemati, and M. R. A. Mogaddam. 2021. Dispersive solid phase extraction combined with in syringe deep eutectic solvent based dispersive liquid-liquid microextraction for determination of some pesticides and their metabolite in egg samples. Journal of Food Composition and Analysis 96:103696. doi:10.1016/j.jfca.2020.103696.
  • Ozdemir, S., E. Kilinc, O. Acer, and M. Soylak. 2022. Preconcentrations of Zn(II) and Hg(II) in environmental and food samples by SPE on B. licheniformis loaded Amberlite XAD-4. Biological Trace Element Research 200 (4):1972–80. doi:10.1007/s12011-021-03000-w.
  • Ozcan, R., B. Cesur, E. Tezgit, T. U. Gösterişli, and S. Bakırdere. 2021. Determination of pyridaphenthion in soybean sprout samples by gas chromatography mass spectrometry with matrix matching calibration strategy after metal sieve linked double syringe based liquid-phase microextraction. Food Chemistry 342:128294. doi:10.1016/j.foodchem.2020.128294.
  • Pourreza, N., and M. Ghomi. 2011. Simultaneous cloud point extraction and spectrophotometric determination of carmoisine and brilliant blue FCF in food samples. Talanta 84 (1):240–3. doi:10.1016/j.talanta.2010.12.043.
  • Sarafraz-Yazdi, A., and A. Amiri. 2010. Liquid-phase microextraction. TrAC Trends in Analytical Chemistry 29 (1):1–14. doi:10.1016/j.trac.2009.10.003.
  • Shah, S. N., F. Uzcan, and M. Soylak. 2022. Ultrasound-assisted deep eutectic solvent microextraction procedure for traces Ponceau 4R in water and cosmetic samples. International Journal of Environmental Science and Technology 19 (1):189–96. doi:10.1007/s13762-021-03154-z.
  • Soylak, M., U. Şahin, and L. Elçi. 1996. Spectrophotometric determination of molybdenum in steel samples utilising selective sorbent extraction on Amberlite XAD-8 resin. Analytica Chimica Acta 322 (1-2):111–5. doi:10.1016/0003-2670(95)00603-6.
  • Soylak, M., L. Elçi, and M. Dogan. 1999. Flame atomic absorption spectrometric determination of cadmium, cobalt, copper, lead and nickel in chemical grade potassium salts after an enrichment and separation procedure. Journal of Trace and Microprobe Techniques 17 (2):149–56.
  • Soylak, M., and Y. E. Unsal. 2012. Determination of traces of ıron and lead in food and water samples after preconcentration on multiwalled carbon nanotubes. Journal of AOAC International 95 (4):1183–8. doi:10.5740/jaoacint.11-168.
  • Soylak, M., Y. E. Unsal, and M. Tuzen. 2011. Spectrophotometric determination of trace levels of allura red in water samples after separation and preconcentration. Food and Chemical Toxicology : an İnternational Journal Published for the British Industrial Biological Research Association 49 (5):1183–7. doi:10.1016/j.fct.2011.02.013.
  • Soylak, M., S. Baran, and F. Uzcan. 2022. Ultrasound assisted deep eutectic solvent based liquid phase microextraction for the preconcentration and spectrophotometric determination of Amaranth (E123) in water and food samples. Instrumentation Science & Technology 50 (2):203–18. doi:10.1080/10739149.2021.1982726.
  • Subba, N., P. Sahu, N. Das, and P. Sen. 2021. Rational design, preparation and characterization of a ternary non-ıonic room-temperature deep eutectic solvent derived from urea, acetamide, and sorbitol. Journal of Chemical Sciences 133 (1):25. doi:10.1007/s12039-020-01866-2.
  • Tajik, S., A. Lohrasbi-Nejad, P. M. Jahani, M. B. Askari, P. Salarizadeh, and H. Beitollahi. 2022. Co-detection of carmoisine and tartrazine by carbon paste electrode modified with ıonic liquid and MoO3/WO3 nanocomposite. Journal of Food Measurement and Characterization 16 (1):722–30. doi:10.1007/s11694-021-01201-4.
  • Tong, X., J. Yang, Y. Zhao, H. Wan, Y. He, L. Zhang, H. Wan, and C. Li. 2021. Greener extraction process and enhanced in vivo bioavailability of bioactive components from Carthamus Tinctorius L. by natural deep eutectic solvents. Food Chemistry 348:129090. doi:10.1016/j.foodchem.2021.129090.
  • Wang, M., X. Kang, L. Deng, M. Wang, Z. Xia, and D. Gao. 2021. Deep eutectic solvent assisted synthesis of carbon dots using sophora flavescens aiton modified with polyethyleneimine: Application in myricetin sensing and cell ımaging. Food Chemistry 345:128817. doi:10.1016/j.foodchem.2020.128817.
  • Xu, Y., L. Wei, X. Chen, J. Zhao, and Y. Wang. 2021. Application of the liquid–liquid dispersed microextraction based on phase transition behavior of temperature sensitive polymer to rapidly detect 5 BPs in food packaging. Food Chemistry 347:128960. doi:10.1016/j.foodchem.2020.128960.
  • Yilmaz, E., and M. Soylak. 2016. Latest trends, green aspects, and ınnovations in liquid-phase-based microextraction techniques: A review. Turkısh Journal of Chemıstry 40 (6):868–93. doi:10.3906/kim-1605-26.
  • Zargar, B., N. Pourreza, E. Bayat, and A. Hatamie. 2016. Zein bio-nanoparticles: A novel green nanopolymer as a dispersive solid-phase extraction adsorbent for separating and determining trace amounts of azorubine in different foodstuffs. RSC Advances 6 (77):73096–105. doi:10.1039/C6RA09027C.
  • Zhang, K., Y. Wang, S. Li, and G. Zhu. 2021. Air-assisted liquid-liquid microextraction based on the solidification of floating deep eutectic solvents for the simultaneous determination of bisphenols and polycyclic aromatic hydrocarbons in tea ınfusions via HPLC. Food Chemistry 348:129106. doi:10.1016/j.foodchem.2021.129106.
  • Zhang, Q., K. D. O. Vigier, S. Royer, and F. Jérôme. 2012. Deep eutectic solvents: Syntheses, properties and applications. Chemical Society Reviews 41 (21):7108–46. doi:10.1039/c2cs35178a.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.