288
Views
3
CrossRef citations to date
0
Altmetric
Natural Product Analysis

Characterization of the Bioactive Components in Aronia melanocarpa (Black Chokeberry) Fruit Extracts and Purified Fractions by Spectrophotometry and High-Performance Liquid Chromatography (HPLC)

, , ORCID Icon, ORCID Icon & ORCID Icon
Pages 2291-2308 | Received 14 Sep 2022, Accepted 31 Dec 2022, Published online: 09 Jan 2023

References

  • Brand-Williams, W., M.-E. Cuvelier, and C. Berset. 1995. Use of a free radical method to evaluate antioxidant activity. LWT—Food Science and Technology 28 (1):25–30. doi:10.1016/S0023-6438(95)80008-5.
  • Brazdauskas, T., L. Montero, P. R. Venskutonis, E. Ibañez, and M. Herrero. 2016. Downstream valorization and comprehensive two-dimensional liquid chromatography-based chemical characterization of bioactives from black chokeberries (Aronia melanocarpa) pomace. Journal of Chromatography A 1468:126–35. doi:10.1016/j.chroma.2016.09.033.
  • Chang, C.-C., M.-H. Yang, H.-M. Wen, and J.-C. Chern. 2002. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of Food Drug Analysis 10:178–82.
  • Ciocoiu, M., L. Badescu, A. Miron, and M. Badescu. 2013. The involvement of a polyphenol-rich extract of black chokeberry in oxidative stress on experimental arterial hypertension. Evidence-Based Complementary and Alternative Medicine: eCAM 2013:912769. doi:10.1155/2013/912769.
  • Cortés-Herrera, C., G. Artavia, A. Leiva, and F. Granados-Chinchilla. 2018. Liquid chromatography analysis of common nutritional components, in feed and food. Foods 8 (1):1. doi:10.3390/foods8010001.
  • Folin, O., and W. Denis. 1915. A colorimetric method for the determination of phenols (and phenol derivatives) in urine. Journal of Biological Chemistry 22 (2):305–08. doi:10.1016/S0021-9258(18)87648-7.
  • Fuleki, T., and F. Francis. 1968. Quantitative methods for anthocyanins. 1. Extraction and determination of total anthocyanin in cranberries. Journal of Food Science 33 (1):72–77. doi:10.1111/j.1365-2621.1968.tb00887.x.
  • Girelli, A. M., C. Mele, L. Salvagni, and A. M. Tarola. 2015. Polyphenol content and antioxidant activity of Merlot and Shiraz Wine. Analytical Letters 48 (12):1865–80. doi:10.1080/00032719.2014.1003429.
  • Han, Y., J. Du, J. Li, and M. Li. 2019. Quantification of the organic acids in hawthorn wine: A comparison of two HPLC methods. Molecules 24 (11):2150. doi:10.3390/molecules24112150.
  • Hocker, N., C. Wang, J. Prochotsky, A. Eppurath, L. Rudd, and M. Perera. 2017. Quantification of antioxidant properties in popular leaf and bottled tea by high-performance liquid chromatography (HPLC), spectrophotometry, and voltammetry. Analytical Letters 50 (10):1640–56. doi:10.1080/00032719.2016.1242008.
  • Hwang, S. J., W. B. Yoon, O.-H. Lee, S. J. Cha, and J. D. Kim. 2014. Radical-scavenging-linked antioxidant activities of extracts from black chokeberry and blueberry cultivated in Korea. Food Chemistry 146:71–77. doi:10.1016/j.foodchem.2013.09.035.
  • Imai, M., T. Yamane, M. Kozuka, S. Takenaka, T. Sakamoto, T. Ishida, T. Nakagaki, Y. Nakano, and H. Inui. 2020. Caffeoylquinic acids from aronia juice inhibit both dipeptidyl peptidase IV and α-glucosidase activities. LWT 129:109544. doi:10.1016/j.lwt.2020.109544.
  • Jakobek, L., M. Drenjančević, V. Jukić, and M. Šeruga. 2012. Phenolic acids, flavonols, anthocyanins and antiradical activity of “Nero”, “Viking”, “Galicianka” and wild chokeberries. Scientia Horticulturae 147:56–63. doi:10.1016/j.scienta.2012.09.006.
  • Jakobek, L., M. Šeruga, M. Medvidović-Kosanović, and I. Novak. 2007. Antioxidant activity and polyphenols of aronia in comparison to other berry species. Agriculturae Conspectus Scientificus 72:301–06.
  • Jeong, J.-M. 2008. Antioxidative and antiallergic effects of aronia (Aronia melanocarpa) extract. Journal of the Korean Society of Food Science and Nutrition 37 (9):1109–13. doi:10.3746/jkfn.2008.37.9.1109.
  • Jurikova, T., J. Mlcek, S. Skrovankova, D. Sumczynski, J. Sochor, I. Hlavacova, L. Snopek, and J. Orsavova. 2017. Fruits of black chokeberry Aronia melanocarpa in the prevention of chronic diseases. Molecules 22 (6):944. doi:10.3390/molecules22060944.
  • Kai, H., K. Sugamoto, S. Toshima, Y. Goto, T. Nakayama, K. Morishita, and H. Kunitake. 2022. Effective utilization of Vaccinium virgatum Aiton stems as functional materials: Major constituent analysis and bioactivity evaluation. Plants 11 (4):568. doi:10.3390/plants11040568.
  • Koh, D.-W., J.-W. Park, J.-H. Lim, M.-J. Yea, and D.-Y. Bang. 2018. A rapid method for simultaneous quantification of 13 sugars and sugar alcohols in food products by UPLC-ELSD. Food Chemistry 240:694–700. doi:10.1016/j.foodchem.2017.07.142.
  • Kraemer‐Schafhalter, A., H. Fuchs, and W. Pfannhauser. 1998. Solid‐phase extraction (SPE)—A comparison of 16 materials for the purification of anthocyanins from Aronia melanocarpa var Nero. Journal of the Science of Food and Agriculture 78 (3):435–40. doi:10.1002/(SICI)1097-0010(199811)78:3<435::AID-JSFA139>3.0.CO;2-Q.
  • Kulling, S. E., and H. M. Rawel. 2008. Chokeberry (Aronia melanocarpa)—A review on the characteristic components and potential health effects. Planta Medica 74 (13):1625–34. doi:10.1055/s-0028-1088306.
  • Lamuela-Raventós, R. M. 2017. Folin-Ciocalteu method for the measurement of total phenolic content and antioxidant capacity. In Measurement of antioxidant activity & capacity: Recent trends and applications, ed. R. Apak, E. Capanoglu and F. Shahidi, 107–15. Brisbane: Wiley.
  • Lee, J., R. W. Durst, R. E. Wrolstad, T. Eisele, M. M. Giusti, J. Hach, H. Hofsommer, S. Koswig, D. A. Krueger, S. Kupina, et al. 2005. Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: Collaborative study. Journal of AOAC International 88 (5):1269–78. doi:10.1093/jaoac/88.5.1269.
  • Lee, K. P., N. H. Choi, H.-S. Kim, S. Ahn, I.-S. Park, and D. W. Lee. 2018. Anti-neuroinflammatory effects of ethanolic extract of black chokeberry (Aronia melanocapa L.) in lipopolysaccharide-stimulated BV2 cells and ICR mice. Nutrition Research and Practice 12 (1):13–19. doi:10.4162/nrp.2018.12.1.13.
  • Li, H., S. Luo, J. Su, H. Ke, W. Wang, and B. Yang. 2015. Optimization of extraction conditions for flavonoid composition and antioxidant activity of Radix Scutellariae. Analytical Letters 48 (8):1234–44. doi:10.1080/00032719.2014.979360.
  • Ma, B., Y. Yuan, M. Gao, C. Li, C. Ogutu, M. Li, and F. Ma. 2018. Determination of predominant organic acid components in Malus species: Correlation with apple domestication. Metabolites 8 (4):74. doi:10.3390/metabo8040074.
  • Ma, C., Z. Sun, C. Chen, L. Zhang, and S. Zhu. 2014. Simultaneous separation and determination of fructose, sorbitol, glucose and sucrose in fruits by HPLC–ELSD. Food Chemistry 145:784–88.
  • Mammen, D., and M. Daniel. 2012. A critical evaluation on the reliability of two aluminum chloride chelation methods for quantification of flavonoids. Food Chemistry 135 (3):1365–68. doi:10.1016/j.foodchem.2012.05.109.
  • Matsumoto, M., H. Hara, H. Chiji, and T. Kasai. 2004. Gastroprotective effect of red pigments in black chokeberry fruit (Aronia melanocarpa Elliot) on acute gastric hemorrhagic lesions in rats. Journal of Agricultural and Food Chemistry 52 (8):2226–29. doi:10.1021/jf034818q.
  • Mayer-Miebach, E., M. Adamiuk, and D. Behsnilian. 2012. Stability of chokeberry bioactive polyphenols during juice processing and stabilization of a polyphenol-rich material from the by-product. Agriculture 2 (3):244–58. doi:10.3390/agriculture2030244.
  • Medina-Remón, A., A. Barrionuevo-González, R. Zamora-Ros, C. Andres-Lacueva, R. Estruch, M.-Á. Martínez-González, J. Diez-Espino, and R. M. Lamuela-Raventos. 2009. Rapid Folin–Ciocalteu method using microtiter 96-well plate cartridges for solid phase extraction to assess urinary total phenolic compounds, as a biomarker of total polyphenols intake. Analytica Chimica Acta 634 (1):54–60.
  • Moreno, M., M. I. Isla, A. R. Sampietro, and M. A. Vattuone. 2000. Comparison of the free radical-scavenging activity of propolis from several regions of Argentina. Journal of Ethnopharmacology 71 (1–2):109–14. doi:10.1016/S0378-8741(99)00189-0.
  • Ochmian, I. D., J. Grajkowski, and M. Smolik. 2012. Comparison of some morphological features, quality and chemical content of four cultivars of chokeberry fruits (Aronia melanocarpa). Notulae Botanicae Horti Agrobotanici Cluj-Napoca 40 (1):253–60. doi:10.15835/nbha4017181.
  • Ohgami, K., I. Ilieva, K. Shiratori, Y. Koyama, X.-H. Jin, K. Yoshida, S. Kase, N. Kitaichi, Y. Suzuki, T. Tanaka, et al. 2005. Anti-inflammatory effects of aronia extract on rat endotoxin-induced uveitis. Investigative Ophthalmology & Visual Science 46 (1):275–81. doi:10.1167/iovs.04-0715.
  • Oszmiański, J., and A. Wojdylo. 2005. Aronia melanocarpa phenolics and their antioxidant activity. European Food Research and Technology 221 (6):809–13. doi:10.1007/s00217-005-0002-5.
  • Paulrayer, A., A. Adithan, J. H. Lee, K. H. Moon, D. G. Kim, S. Y. Im, C.-W. Kang, N. S. Kim, and J.-H. Kim. 2017. Aronia melanocarpa (black chokeberry) reduces ethanol-induced gastric damage via regulation of HSP-70, NF-κB, and MCP-1 signaling. International Journal of Molecular Sciences 18 (6):1195. doi:10.3390/ijms18061195.
  • Platonova, E. Y., M. V. Shaposhnikov, H.-Y. Lee, J.-H. Lee, K.-J. Min, and A. Moskalev. 2021. Black chokeberry (Aronia melanocarpa) extracts in terms of geroprotector criteria. Trends in Food Science and Technology.114:570–84. doi:10.1016/j.tifs.2021.06.020.
  • Ramić, M., S. Vidović, Z. Zeković, J. Vladić, A. Cvejin, and B. Pavlić. 2015. Modeling and optimization of ultrasound-assisted extraction of polyphenolic compounds from Aronia melanocarpa by-products from filter-tea factory. Ultrasonics Sonochemistry 23:360–68. doi:10.1016/j.ultsonch.2014.10.002.
  • Rugină, D., Z. Sconţa, L. Leopold, A. Pintea, A. Bunea, and C. Socaciu. 2012. Antioxidant activities of chokeberry extracts and the cytotoxic action of their anthocyanin fraction on HeLa human cervical tumor cells. Journal of Medicinal Food 15 (8):700–06. doi:10.1089/jmf.2011.0246.
  • Schulze, C., A. Strehle, S. Merdivan, and S. Mundt. 2017. Carbohydrates in microalgae: Comparative determination by TLC, LC-MS without derivatization, and the photometric thymol-sulfuric acid method. Algal Research 25:372–80. doi:10.1016/j.algal.2017.05.001.
  • Sharma, O. P., and T. K. Bhat. 2009. DPPH antioxidant assay revisited. Food Chemistry 113 (4):1202–05. doi:10.1016/j.foodchem.2008.08.008.
  • Skupień, K., D. Kostrzewa‐Nowak, J. Oszmiański, and J. Tarasiuk. 2008. In vitro antileukaemic activity of extracts from chokeberry (Aronia melanocarpa [Michx] Elliott) and mulberry (Morus alba L.) leaves against sensitive and multidrug resistant HL60 cells. Phytotherapy Research: PTR 22 (5):689–94. doi:10.1002/ptr.2411.
  • Sommella, E., G. Pepe, F. Pagano, C. Ostacolo, G. C. Tenore, M. T. Russo, E. Novellino, M. Manfra, and P. Campiglia. 2015. Detailed polyphenolic profiling of Annurca apple (M. pumila Miller cv Annurca) by a combination of RP-UHPLC and HILIC, both hyphenated to IT-TOF mass spectrometry. Food Research International.76:466–77. doi:10.1016/j.foodres.2015.05.044.
  • Staszowska-Karkut, M., and M. Materska. 2020. Phenolic composition, mineral content, and beneficial bioactivities of leaf extracts from black currant (Ribes nigrum L.), raspberry (Rubus idaeus), and aronia (Aronia melanocarpa). Nutrients 12 (2):463. doi:10.3390/nu12020463.
  • Strigl, A., E. Leitner, and W. Pfannhauser. 1995. Qualitative and quantitative analysis of anthocyans in black chokeberries (Aronia melanocarpa Michx. Ell.) by TLC, HPLC and UV/VIS-spectrometry. European Food Research and Technology 201:266–68.
  • Sun, B., C. Leandro, J. M. Ricardo da Silva, and I. Spranger. 1998a. Separation of grape and wine proanthocyanidins according to their degree of polymerization. Journal of Agricultural and Food Chemistry 46 (4):1390–96. doi:10.1021/jf970753d.
  • Sun, B., J. M. Ricardo-da-Silva, and I. Spranger. 1998. Critical factors of vanillin assay for catechins and proanthocyanidins. Journal of Agricultural and Food Chemistry 46 (10):4267–74. doi:10.1021/jf980366j.
  • Tanaka, T., and A. Tanaka. 2001. Chemical components and characteristics of black chokeberry. Nippon Shokuhin Kagaku Kogaku KAISHI 48 (8):606–10. doi:10.3136/nskkk.48.606.
  • Teneva, D., D. Pencheva, A. Petrova, M. Ognyanov, Y. Georgiev, and P. Denev. 2022. Addition of medicinal plants increases antioxidant activity, color, and anthocyanin stability of black chokeberry (Aronia melanocarpa) functional beverages. Plants 11 (3):243. doi:10.3390/plants11030243.
  • Wen, H., H. Cui, H. Tian, X. Zhang, L. Ma, C. Ramassamy, and J. Li. 2020. Isolation of neuroprotective anthocyanins from black chokeberry (Aronia melanocarpa) against amyloid-β-induced cognitive impairment. Foods 10 (1):63. doi:10.3390/foods10010063.
  • Wenzel, J., L. Wang, S. Horcasitas, A. Warburton, S. Constine, A. Kjellson, K. Cussans, M. Ammerman, and C. S. Samaniego. 2020. Influence of supercritical fluid extraction parameters in preparation of black chokeberry extracts on total phenolic content and cellular viability. Food Science & Nutrition 8 (7):3626–37. doi:10.1002/fsn3.1645.
  • Yang, L., C. Rong-Rong, F. Ji-Li, and Y. Ke. 2019. Total anthocyanins and cyanidin-3-O-glucoside contents and antioxidant activities of purified extracts from eight different pigmented plants. Pharmacognosy Magazine 15 (60):124–29. doi:10.4103/pm.pm_162_18.
  • Yu, F.-C., S.-M. Lai, and S.-Y. Suen. 2003. Extraction of flavonoid glycosides from Ginkgo biloba leaves and their adsorption separations using hydrophobic and anion-exchange membranes. Separation Science and Technology 38 (5):1033–50. doi:10.1081/SS-120018122.
  • Zapolska-Downar, D., D. Bryk, M. Małecki, K. Hajdukiewicz, and D. Sitkiewicz. 2012. Aronia melanocarpa fruit extract exhibits anti-inflammatory activity in human aortic endothelial cells. European Journal of Nutrition 51 (5):563–72. doi:10.1007/s00394-011-0240-1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.