497
Views
1
CrossRef citations to date
0
Altmetric
Sample Preparation

New di-(2-Ethylhexyl)Phosphoric Acid-Based Supramolecular Solvent (DEHPA-SUPRAS) Microextraction Coupled to High Performance Liquid Chromatography (HPLC) for the Determination of Organophosphorus Pesticides in Tea Drinks

, ORCID Icon & ORCID Icon
Pages 2329-2345 | Received 30 Nov 2022, Accepted 07 Jan 2023, Published online: 20 Jan 2023

References

  • Alkan, C., and H. Çabuk. 2022. Matrix-induced sugaring-out liquid-liquid microextraction coupled with high-performance liquid chromatography for the determination of organophosphorus pesticides in fruit jams. Separation Science Plus 5 (8):416–23. doi:10.1002/sscp.202200039.
  • Altunay, N., and A. Elik. 2021. Ultrasound-assisted alkanol-based nanostructured supramolecular solvent for extraction and determination of cadmium in food and environmental samples: Experimental design methodology. Microchemical Journal 164:105958. doi:10.1016/j.microc.2021.105958.
  • Ata, Ş., M. Akyüz, and H. Çabuk. 2017. Determination of biogenic amines in licorice (Glycyrrhiza glabra) by ion‐pair extraction and liquid chromatography–tandem mass spectrometry. Journal of the Science of Food and Agriculture 97 (5):1427–32. doi:10.1002/jsfa.7881.
  • Ballesteros-Gómez, A., S. Rubio, and D. Pérez-Bendito. 2009. Potential of supramolecular solvents for the extraction of contaminants in liquid foods. Journal of Chromatography. A 1216 (3):530–9. doi:10.1016/j.chroma.2008.06.029.
  • Ballesteros-Gómez, A., and S. Rubio. 2012. Environment-responsive alkanol-based supramolecular solvents: Characterization and potential as restricted access property and mixed-mode extractants. Analytical Chemistry 84 (1):342–9. doi:10.1021/ac2026207.
  • Ballesteros-Gómez, A., L. Lunar, M. D. Sicilia, and S. Rubio. 2019. Hyphenating supramolecular solvents and liquid chromatography: Tips for efficient extraction and reliable determination of organics. Chromatographia 82 (1):111–24. doi:10.1007/s10337-018-3614-1.
  • Bogdanova, P., A. Pochivalov, C. Vakh, and A. Bulatov. 2020. Supramolecular solvents formation in aqueous solutions containing primary amine and monoterpenoid compound: Liquid phase microextraction of sulfonamides. Talanta 216:120992. doi:10.1016/j.talanta.2020.120992.
  • Caballero-Casero, N., S. Garcia-Fonseca, and S. Rubio. 2018. Restricted access supramolecular solvents for the simultaneous extraction and cleanup of ochratoxin A in spices subjected to EU regulation. Food Control.88:33–9. doi:10.1016/j.foodcont.2018.01.003.
  • Caballero-Casero, N., and S. Rubio. 2021. Comprehensive supramolecular solvent-based sample treatment platform for evaluation of combined exposure to mixtures of bisphenols and derivatives by liquid chromatography-tandem mass spectrometry. Analytica Chimica Acta 1144:14–25. doi:10.1016/j.aca.2020.11.057.
  • Cabuk, H., M. Köktürk, and S. Ata. 2014. pH‐assisted homogeneous liquid–liquid microextraction using dialkylphosphoric acid as an extraction solvent for the determination of chlorophenols in water samples. Journal of Separation Science 37 (11):1343–51. doi:10.1002/jssc.201400158.
  • Çabuk, H., and O. Kavaracı. 2022. Magnetic retrieval of a switchable hydrophilicity solvent: Fast homogeneous liquid–liquid microextraction for the determination of benzophenone‐type UV filters in environmental waters. International Journal of Environmental Analytical Chemistry 102 (11):2569–85. doi:10.1080/03067319.2020.1757088.
  • Calandra, P., A. Ruggirello, A. Mele, and V. T. Liveri. 2010. Self-assembly in surfactant-based liquid mixtures: Bis (2-ethylhexyl) phosphoric acid/bis (2-ethylhexyl) amine systems. Journal of Colloid and Interface Science 348 (1):183–8. doi:10.1016/j.jcis.2010.04.031.
  • Carasek, E., G. Bernardi, D. Morelli, and J. Merib. 2021. Sustainable green solvents for microextraction techniques: Recent developments and applications. Journal of Chromatography. A 1640:461944. doi:10.1016/j.chroma.2021.461944.
  • Chen, J. H., Y. H. Chang, K. C. Hsu, and J. C. Lin. 2021. Extraction of Ga (III) by Di‐(2‐ethylhexyl) phosphoric acid (D2EHPA)‐modified XAD‐4 resins prepared by solvent‐nonsolvent modification. Chemical Engineering & Technology 44 (12):2257–68. doi:10.1002/ceat.202100226.
  • Dueñas-Mas, M. J., A. Ballesteros-Gómez, and S. Rubio. 2020. Supramolecular solvent-based microextraction of aryl-phosphate flame retardants in indoor dust from houses and education buildings in Spain. The Science of the Total Environment 733:139291. doi:10.1016/j.scitotenv.2020.139291.
  • Faraji, M., Z. Afsharsaveh, and M. Shirani. 2022. Application of vortex assisted dispersive liquid-liquid microextraction based on a new deep eutectic solvent for microextraction of aromatic amines from simulant of kitchenware samples by HPLC-UV. Microchemical Journal 175:107124. doi:10.1016/j.microc.2021.107124.
  • Farajzadeh, M. A., M. R. A. Mogaddam, S. R. Aghdam, N. Nouri, and M. Bamorrowat. 2016. Application of elevated temperature-dispersive liquid-liquid microextraction for determination of organophosphorus pesticides residues in aqueous samples followed by gas chromatography-flame ionization detection. Food Chemistry 212:198–204. doi:10.1016/j.foodchem.2016.05.157.
  • Feizi, N., Y. Yamini, M. Moradi, and B. Ebrahimpour. 2016. Nano‐structured gemini‐based supramolecular solvent for the microextraction of cyhalothrin and fenvalerate. Journal of Separation Science 39 (17):3400–9. doi:10.1002/jssc.201600263.
  • García-Fonseca, S., and S. Rubio. 2016. Restricted access supramolecular solvents for removal of matrix-induced ionization effects in mass spectrometry: Application to the determination of Fusarium toxins in cereals. Talanta 148:370–9. doi:10.1016/j.talanta.2015.11.014.
  • González-Rubio, S., A. Ballesteros-Gómez, D. García-Gómez, and S. Rubio. 2022. Double-headed amphiphile-based sponge droplets: Synthesis, characterization and potential for the extraction of compounds over a wide polarity range. Talanta 239:123108. doi:10.1016/j.talanta.2021.123108.
  • Gorji, S., P. Biparva, M. Bahram, and G. Nematzadeh. 2019. Rapid and direct microextraction of pesticide residues from rice and vegetable samples by supramolecular solvent in combination with chemometrical data processing. Food Analytical Methods 12 (2):394–408. doi:10.1007/s12161-018-1371-2.
  • Gouda, A. A., M. S. Elmasry, H. Hashem, and H. M. El-Sayed. 2018. Eco-friendly environmental trace analysis of thorium using a new supramolecular solvent-based liquid-liquid microextraction combined with spectrophotometry. Microchemical Journal 142:102–7. doi:10.1016/j.microc.2018.06.024.
  • Gure, A., N. Megersa, and N. Retta. 2014. Ion-pair assisted liquid–liquid extraction for selective separation and analysis of multiclass pesticide residues in environmental waters. Analytical Methods 6 (13):4633–42. doi:10.1039/C4AY00285G.
  • He, L., X. Luo, H. Xie, C. Wang, X. Jiang, and K. Lu. 2009. Ionic liquid-based dispersive liquid–liquid microextraction followed high-performance liquid chromatography for the determination of organophosphorus pesticides in water sample. Analytica chimica Acta 655 (1-2):52–9. doi:10.1016/j.aca.2009.09.044.
  • Jia, Q., Z. Li, W. Zhou, and H. Li. 2009. Studies on the solvent extraction of rare earths from nitrate media with a combination of di‐(2‐ethylhexyl) phosphoric acid and sec‐octylphenoxyacetic acid. Journal of Chemical Technology & Biotechnology 84 (4):565–9. doi:10.1002/jctb.2081.
  • Kamaruddin, A. F., M. M. Sanagi, W. A. Wan Ibrahim, D. S. Md. Shukri, and A. S. Abdul Keyon. 2017. Polypyrrole‐magnetite dispersive micro‐solid‐phase extraction combined with ultraviolet‐visible spectrophotometry for the determination of rhodamine 6G and crystal violet in textile wastewater. Journal of Separation Science 40 (21):4256–63. doi:10.1002/jssc.201700659.
  • Kaya, S. I., A. Cetinkaya, and S. A. Ozkan. 2022. Green analytical chemistry approaches on environmental analysis. Trends in Environmental Analytical Chemistry 33: E00157. doi:10.1016/j.teac.2022.e00157.
  • Li, J., F. Wu, Y. Zhang, J. Feng, X. Wang, Y. Yang, Z. Wang, and H. Zhang. 2023. Application of supramolecular solvent based on the surface-active ionic liquid in dispersive liquid–liquid microextraction of triazine herbicides in tea samples. Food chemistry 399:133901. doi:10.1016/j.foodchem.2022.133901.
  • Magiera, S., A. Nieścior, and I. Baranowska. 2016. Quick supramolecular solvent-based microextraction combined with ultra-high performance liquid chromatography for the analysis of isoflavones in soy foods. Food Analytical Methods 9 (6):1770–80. doi:10.1007/s12161-015-0365-6.
  • Moghadam, M. R., B. Zargar, and S. Rastegarzadeh. 2018. Novel magnetic hollow zein nanoparticles for preconcentration of chlorpyrifos from water and soil samples prior to analysis via high-performance liquid chromatography (HPLC). The Analyst 143 (9):2174–82. doi:10.1039/C7AN01526G.
  • Musarurwa, H., and N. T. Tavengwa. 2021a. Emerging green solvents and their applications during pesticide analysis in food and environmental samples. Talanta 223 (Pt 1):121507. doi:10.1016/j.talanta.2020.121507.
  • Musarurwa, H., and N. T. Tavengwa. 2021b. Supramolecular solvent-based micro-extraction of pesticides in food and environmental samples. Talanta 223 (Pt 1):121515. doi:10.1016/j.talanta.2020.121515.
  • Noormohammadi, F., M. Faraji, and M. Pourmohammad. 2022. Determination of aromatic amines in environmental water samples by deep eutectic solvent-based dispersive liquid-liquid microextraction followed by HPLC-UV. Arabian Journal of Chemistry 15 (6):103783. doi:10.1016/j.arabjc.2022.103783.
  • Olisah, C., G. Rubidge, L. R. Human, and J. B. Adams. 2021. A translocation analysis of organophosphate pesticides between surface water, sediments and tissues of common reed Phragmites australis. Chemosphere 284:131380. doi:10.1016/j.chemosphere.2021.131380.
  • Pochivalov, A., C. Vakh, S. Garmonov, L. Moskvin, and A. Bulatov. 2020. An automated in-syringe switchable hydrophilicity solvent-based microextraction. Talanta 209:120587. doi:10.1016/j.talanta.2019.120587.
  • Rubio, S. 2020. Twenty years of supramolecular solvents in sample preparation for chromatography: Achievements and challenges ahead. Analytical and Bioanalytical Chemistry 412 (24):6037–58. doi:10.1007/s00216-020-02559-y.
  • Ruiz, F. J., S. Rubio, and D. Pérez-Bendito. 2006. Tetrabutylammonium-induced coacervation in vesicular solutions of alkyl carboxylic acids for the extraction of organic compounds. Analytical Chemistry 78 (20):7229–39. doi:10.1021/ac060427±.
  • Ruiz, F. J., S. Rubio, and D. Pérez-Bendito. 2007. Water-induced coacervation of alkyl carboxylic acid reverse micelles: Phenomenon description and potential for the extraction of organic compounds. Analytical Chemistry 79 (19):7473–84. doi:10.1021/ac0708644.
  • Salamat, Q., Y. Yamini, M. Moradi, A. Farahani, and N. Feizi. 2019. Extraction of antidepressant drugs in biological samples using alkanol-based nano structured supramolecular solvent microextraction followed by gas chromatography with mass spectrometric analysis. Journal of Separation Science 42 (8):1620–8. doi:10.1002/jssc.201801152.
  • Salamat, Q., and Y. Yamini. 2022. Application of nanostructured supramolecular solvent based on C12mimBr ionic liquid surfactant to direct extraction of some chlorophenols in soil and rice samples. Journal of Molecular Liquids 366:120166. doi:10.1016/j.molliq.2022.120166.
  • Seebunrueng, K., Y. Santaladchaiyakit, P. Soisungnoen, and S. Srijaranai. 2011. Catanionic surfactant ambient cloud point extraction and high-performance liquid chromatography for simultaneous analysis of organophosphorus pesticide residues in water and fruit juice samples. Analytical and Bioanalytical Chemistry 401 (5):1703–12. doi:10.1007/s00216-011-5214-x.
  • Shakourian, M., Y. Yamini, and M. Safari. 2020. Facile magnetization of metal–organic framework TMU-6 for magnetic solid-phase extraction of organophosphorus pesticides in water and rice samples. Talanta 218:121139. doi:10.1016/j.talanta.2020.121139.
  • Sricharoen, P., N. Limchoowong, S. Techawongstien, and S. Chanthai. 2017. New approach applying a pet fish air pump in liquid‐phase microextraction for the determination of Sudan dyes in food samples by HPLC. Journal of Separation Science 40 (19):3848–56. doi:10.1002/jssc.201700642.
  • Torres-Valenzuela, L. S., A. Ballesteros-Gómez, and S. Rubio. 2020. Supramolecular solvent extraction of bioactives from coffee cherry pulp. Journal of Food Engineering 278:109933. doi:10.1016/j.jfoodeng.2020.109933.
  • Ulusoy, H. İ., K. Köseoğlu, A. Kabir, S. Ulusoy, and M. Locatelli. 2020. Fabric phase sorptive extraction followed by HPLC-PDA detection for the monitoring of pirimicarb and fenitrothion pesticide residues. Microchimica Acta 187 (6):1–11. doi:10.1007/s00604-020-04306-7.
  • Wang, P., M. Luo, D. Liu, J. Zhan, X. Liu, F. Wang, Z. Zhou, and P. Wang. 2018. Application of a magnetic graphene nanocomposite for organophosphorus pesticide extraction in environmental water samples. Journal of Chromatography. A 1535:9–16. doi:10.1016/j.chroma.2018.01.003.
  • Yıldız, E., and H. Çabuk. 2022. Determination of the synthetic antioxidants butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) by matrix acidity-induced switchable hydrophilicity solvent-based homogeneous liquid-liquid microextraction (MAI-SHS-HLLME) and high-performance liquid chromatography with ultraviolet detection (HPLC-UV). Analytical Letters 55:480–94. doi:10.1080/00032719.2021.1941072.
  • Zhong, J. J., N. Liao, T. Ding, X. Ye, and D. H. Liu. 2015. Liquid chromatographic method for toxic biogenic amines in foods using a chaotropic salt. Journal of Chromatography. A 1406:331–6. doi:10.1016/j.chroma.2015.06.048.
  • Zohrabi, P., M. Shamsipur, M. Hashemi, and B. Hashemi. 2016. Liquid-phase microextraction of organophosphorus pesticides using supramolecular solvent as a carrier for ferrofluid. Talanta 160:340–6. doi:10.1016/j.talanta.2016.07.036.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.