336
Views
4
CrossRef citations to date
0
Altmetric
Preconcentration Techniques

Graphene-Based Nanomaterials: A Sustainable Material for Solid-Phase Microextraction (SPME) for Environmental Applications

, &
Pages 2385-2400 | Received 21 Oct 2022, Accepted 23 Jan 2023, Published online: 03 Feb 2023

References

  • Ahmed, M. J., K. J. Hossan, and T. Zannat. 2005. A simple spectrophotometric method for the determination of molybdenum in ındustrial, environmental, biological and soil samples using, 2-hydroxyacetophenonebenzoylhydrazone. Pakistan Journal of Analytical Chemistry 6:46–48.
  • Al Othman, Z. A., S. M. Habila, E. Alfadul, M. Yilmaz, and Soylak, M. 2016. A green, novel and simple microprecipitation technique for separation and preconcentration of cadmium with 1-(2-thiazolylazo)-2-naphthol in food samples and determination by microsampling flame atomic absorption spectrometry. Analytical Methods 8:3545–9.
  • Amini, S., H. Ebrahimzadeh, S. Seidi, and N. Jalilian. 2021. Application of electrospun polyacrylonitrile/Zn-MOF-74@ GO nanocomposite as the sorbent for online micro solid-phase extraction of chlorobenzenes in water, soil, and food samples prior to liquid chromatography analysis. Food Chemistry 363:130330.
  • Amiri, A., M. Baghayeri, F. Karimabadi, F. Ghaemi, and B. Maleki. 2020. Graphene oxide/polydimethylsiloxane-coated stainless steel mesh for use in solid-phase extraction cartridges and extraction of polycyclic aromatic hydrocarbons. Mikrochimica Acta 187 (4):213. doi:10.1007/s00604-020-4193-z.
  • Apak, R., G. Atun, K. Guclu, E. Tutem, and G. Keskin. 1995. Sorptive removal of cesium-137 and strontium-90 from water by unconventional sorbents. I. Usage of bauxite wastes (red muds). Journal of Nuclear Science and Technology 32:1008–17.
  • Aqda, T. G., S. Behkami, M. Raoofi, and H. Bagheri. 2019. Graphene oxide-starch-based micro-solid phase extraction of antibiotic residues from milk samples. Journal of Chromatography. A 1591:7–14. doi:10.1016/j.chroma.2018.11.069.
  • Arthur, C. L., and J. Pawliszyn. 1990. Solid phase microextraction with thermal desorption using fused silica optical fibers. Analytical Chemistry 62:2145–8. doi:10.1021/ac00218a019.
  • Aydin, F., E. Yilmaz, E. Ölmez, and M. Soylak. 2020b. Cu2O-CuO ball like/multi-walled carbon nanotube hybrid for fast and effective ultrasound-assisted solid phase extraction of uranium at ultra-trace level prior to ICP-MS detection. Talanta 207:120295. doi:10.1016/j.talanta.2019.120295.
  • Aydin, F., R. Çakmak, A. Levent, and M. Soylak. 2020a. Silica gel‐ımmobilized 5‐aminoisophthalohydrazide: a novel sorbent for solid phase extraction of Cu, Zn and Pb from natural water samples. Applied Organometallic Chemistry 34: E 5481.
  • Aydinoglu, S. 2022. Iron and zinc determination in dietary supplements by flame atomic absorption spectrophotometry. Brazilian Journal of Pharmaceutical Sciences 58: E 21094. doi:10.1590/s2175-97902022e21094.
  • Aydoğan, N., G. Aylaz, M. Bakhshpour, T. Tugsuz, and M. Andaç. 2022. Molecularly designed ıon-ımprinted nanoparticles for real-time sensing of Cu (II) ıons using quartz crystal microbalance. Biomimetics 7:191. doi:10.3390/biomimetics7040191.
  • Balouch, A., M. S. Jagirani, E. Alveroglu, S. Lal, A. M. Mahar, and D. Mal. 2022. Ultra-fast degradation of thymol blue dye under microwave ırradiation technique using alpha-orthorhombic molybdenum trioxide (α-MoO3) colloidal nanoparticles. Journal of Cluster Science 8:1–10. doi:10.1007/s10876-022-02381-9.
  • Barabi, A., S. Seidi, M. Manouchehri, and R. Alizadeh. 2022. Lead analysis by μSPE/FF-AAS: a comparative study based on dimethylglyoxime functionalized silica-coated magnetic iron/graphene oxides. Analytical Biochemistry 653:114739. doi:10.1016/j.ab.2022.114739.
  • Behzadi, M., and M. Mirzaei. 2016. Poly (o-anisidine)/graphene oxide nanosheets composite as a coating for the headspace solid-phase microextraction of benzene, toluene, ethylbenzene and xylenes. Journal of Chromatography. A 1443:35–42. doi: 10.1016/j.chroma.2016.03.039.
  • Bodur, S., S. Erarpat, and S. Bakırdere. 2020. Fe3O4/reduced graphene oxide nanocomposites based dispersive solid phase microextraction for trace determination of profenofos in white rice flour samples. Journal of Food Composition and Analysis 91:103516. doi:10.1016/j.jfca.2020.103516.
  • Bodur, S., S. Erarpat, Ö. F. Tutar, and S. Bakırdere. 2023. A simple spray assisted extraction/preconcentration of cadmium from sunflower oil, olive oil and hazelnut oil samples prior to flame atomic absorption spectrometry determination. Journal of Food Composition and Analysis 117:105144. doi:10.1016/j.jfca.2023.105144.
  • Bozyiğit, G. D., Y. Kılınç, B. T. Zaman, D. S. Chormey, and S. Bakırdere. 2022. Polystyrene-coated magnetic nanoparticles based dispersive solid phase extraction for the determination of cadmium in cigarette ash prior to slotted quartz tube flame atomic absorption spectrometry system. Analytical Sciences : The İnternational Journal of the Japan Society for Analytical Chemistry 38 (6):843–9. doi:10.1007/s44211-022-00104-8.
  • Cen, J., S. Wei, H. Nan, J. Xu, Z. Huang, S. Liu, and G. Ouyang. 2018. Incorporation of carbon nanotubes into graphene for highly efficient solid-phase microextraction of benzene homologues. Microchemical Journal 139:203–9. doi:10.1016/j.microc.2018.02.032.
  • Chang, Q., M. Wang, G. Zhang, X. Zang, H. Li, S. Zhang, C. Wang, and Z. Wang. 2020. Carbon nanospheres as solid‐phase microextraction coating for the extraction of polycyclic aromatic hydrocarbons from water and soil samples. Journal of Separation Science 43 (13):2594–601. doi:10.1002/jssc.201901294.
  • Chatterjee, P., D. Mukherjee, A. Sarkar, and A. K. Chakraborty. 2022. Mn-doped CeO2-CNT nanohybrid for removal of water soluble organic dyes. Applied Nanoscience 12:3031–43. doi:10.1007/s13204-022-02611-6.
  • Chen, T., and H. Xu. 2019. In vivo investigation of pesticide residues in garlic using solid phase microextraction-gas chromatography-mass spectrometry. Analytica Chimica Acta 1090:72–81.
  • Chinthakindi, S., A. Purohit, V. Singh, V. Tak, D. R. Goud, D. Dubey, and D. Pardasani. 2015. Iron oxide functionalized graphene nanocomposite for dispersive solid phase extraction of chemical warfare agents from aqueous samples. Journal of Chromatography. A 1394:9–17. doi:10.1016/j.chroma.2015.03.033.
  • Choleva, T. G., G. Z. Tsogas, and D. L. Giokas. 2019. Determination of silver nanoparticles by atomic absorption spectrometry after dispersive suspended microextraction followed by oxidative dissolution back-extraction. Talanta 196:255–61. doi:10.1016/j.talanta.2018.12.053.
  • Ciocărlie, L., A. Negrea, M. Ciopec, N. Duteanu, P. Negrea, P. Ianasi, and N. S. Nemes. 2022. Indium Recovery by adsorption on MgFe2O4 adsorbents. Materials 15:7054. doi:10.3390/ma15207054.
  • Dadfarnia, S., F. Shakerian, and A. M. H. Shabani. 2013. Suspended nanoparticles in surfactant media as a microextraction technique for simultaneous separation and pre-concentration of cobalt, nickel and copper ions for electrothermal atomic absorption spectrometry determination. Talanta 106:150–4. doi:10.1016/j.talanta.2012.12.004.
  • Darvishnejad, F., J. B. Raoof, and M. Ghani. 2020. MIL-101 (Cr)@ graphene oxide-reinforced hollow fiber solid-phase microextraction coupled with high-performance liquid chromatography to determine diazinon and chlorpyrifos in tomato, cucumber and agricultural water. Analytica Chimica Acta 1140:99–110. doi:10.1016/j.aca.2020.10.015.
  • Dias, F. D. S., M. E. P. Guarino, A. L. C. Pereira, P. P. Pedra, M. D. A. Bezerra, and S. G. Marchetti. 2019. Optimization of magnetic solid phase microextraction with CoFe2O4 nanoparticles unmodified for pre-concentration of cadmium in environmental samples by flame atomic absorption spectrometry. Microchemical Journal 146:1095–101. doi:10.1016/j.microc.2019.02.005.
  • Duval, B., A. Gredilla, S. F.-O d Vallejuelo, E. Tessier, D. Amouroux, and A. de Diego. 2020. A simple determination of trace mercury concentrations in natural waters using dispersive micro-solid phase extraction pre-concentration based on functionalized graphene nanosheets. Microchemical Journal 154:104549. doi:10.1016/j.microc.2019.104549.
  • Elci, L., M. Soylak, and B. Ozcan. 2003. Coprecipitation of Cu(II), Ni(II), Fe(III), Cd(II), Pb(II) and Co(II) in wastewater, sediment and metallic zinc samples with HMDTC-HMA for flame atomic absorption spectrometric determination. Analytical Letters 36:987–99.
  • Esfandiarnejad, R., and H. Sereshti. 2019. Designing an absolutely solvent-free binary extraction system as a green strategy for ultra-trace analysis of chlorophenols. Microchemical Journal 146:701–7. doi:10.1016/j.microc.2019.01.072.
  • Fahimirad, B., A. Asghari, and M. Rajabi. 2018. A novel nanoadsorbent consisting of covalently functionalized melamine onto MWCNT/Fe3O4 nanoparticles for efficient microextraction of highly adverse metal ions from organic and inorganic vegetables: optimization by multivariate analysis. Journal of Molecular Liquids 252:383–91. doi:10.1016/j.molliq.2017.12.133.
  • Farajzadeh, M. A., S. Pasandi, A. Mohebbi, and M. R. A. Mogaddam. 2022. Magnetic dispersive solid phase extraction of some polycyclic aromatic hydrocarbons from honey samples using iron (III) oxinate nanocomposite as an efficient sorbent. Journal of Separation Science 45 (14):2642–51. doi:10.1002/jssc.202200212.
  • Feist, B., and R. Sitko. 2019. Fast and sensitive determination of heavy metal ions as batophenanthroline chelates in food and water samples after dispersive micro-solid phase extraction using graphene oxide as sorbent. Microchemical Journal 147:30–6. doi:10.1016/j.microc.2019.03.013.
  • Filik, H., Z. Yanaz, and R. Apak. 2008. Selective determination of total vanadium in water samples by cloud point extraction of its ternary complex. Analytica Chimica Acta 620 (1-2):27–33. doi:10.1016/j.aca.2008.05.024.
  • Gao, Y., Y. Li, L. Zhang, H. Huang, J. Hu, S. M. Shah, and X. Su. 2012. Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide. Journal of Colloid and İnterface Science 368 (1):540–6. doi:10.1016/j.jcis.2011.11.015.
  • Georgakilas, V., J. N. Tiwari, K. C. Kemp, J. A. Perman, A. B. Bourlinos, K. S. Kim, and R. Zboril. 2016. Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications. Chemical Reviews 116 (9):5464–519. doi:10.1021/acs.chemrev.5b00620.
  • Ghaedi, M., H. Parham, M. Moghadam, K. Mortazavi, and M. Soylak. 2006. Solid phase extraction and spectrophotometric determination of trace amounts of thiocyanate in real samples. Annali di Chimica 96 (11-12):689–96. doi:10.1002/adic.200690071.
  • Ghaedi, M., K. Niknam, E. Niknam, K. Mortazavi, K. Taheri, and M. Soylak. 2010. Development of an efficient procedure for determination of copper, zinc and ıron after solid phase extraction on 3-(1-(1-H-ındol-3-yl)-3-phenylallyl)-1H-indole loaded on duolite XAD 761. Journal of the Chinese Chemical Society 57:275–83. doi:10.1002/jccs.201000042.
  • Ghazaghi, M., H. Z. Mousavi, A. M. Rashidi, H. Shirkhanloo, and R. Rahighi. 2016b. Innovative separation and pre-concentration technique of coagulating homogenous dispersive micro solid phase extraction exploiting graphene oxide nanosheets. Analytica Chimica Acta 902:33–42. doi:10.1016/j.aca.2015.11.011.
  • Grajek, H., J. Jonik, Z. Witkiewicz, T. Wawer, and M. Purchała. 2020. Applications of graphene and its derivatives in chemical analysis. Critical Reviews in Analytical Chemistry 50 (5):445–71. doi:10.1080/10408347.2019.1653165.
  • Guo, Y., X. He, C. Huang, H. Chen, Q. Lu, and L. Zhang. 2020. Metal–organic framework-derived nitrogen-doped carbon nanotube cages as efficient adsorbents for solid-phase microextraction of polychlorinated biphenyls. Analytica Chimica Acta 1095:99–108. doi:10.1016/j.aca.2019.10.023.
  • Gutiérrez-Serpa, A., I. Pacheco-Fernández, J. Pasán, and V. Pino. 2019. Metal–organic frameworks as key materials for solid-phase microextraction devices—a review. Separations 6:47. doi:10.3390/separations6040047.
  • Han, Q., Z. Wang, J. Xia, L. Xia, S. Chen, X. Zhang, and M. Ding. 2013. Graphene as an efficient sorbent for the SPE of organochlorine pesticides in water samples coupled with GC–MS. Journal of Separation Science 36 (21–22):3586–91. doi:10.1002/jssc.201300373.
  • Hooshmand, S., and Z. Es’ Haghi. 2018. Hydrophilic modified magnetic multi-walled carbon nanotube for dispersive solid/liquid phase microextraction of sunitinib in human samples. Analytical Biochemistry 542:76–83. doi:10.1016/j.ab.2017.11.019.
  • Hosseinzadeh, Z., M. Piryaei, M. Babashpour Asl, and M. M. Abolghasemi. 2018. ZnO polythiophene SBA-15 nanoparticles as a solid-phase microextraction fiber for fast determination essential oils of Matricaria chamomilla. Nanochemistry Research 3:124–30.
  • Hou, X., S. Tang, Y. Guo, S. Liu, J. Li, L. Wang, and X. Liu. 2015a. Novel dextran/graphene oxide composite material as a sorbent for solid-phase microextraction of polar aromatic compounds. RSC Advances 5:21720–7. doi:10.1039/C4RA15853A.
  • Jagirani, M. S., and M. Soylak. 2020. A review: recent advances in solid phase microextraction of toxic pollutants using nanotechnology scenario. Microchemical Journal 159:105436. doi:10.1016/j.microc.2020.105436.
  • Jagirani, M. S., F. Uzcan, and M. Soylak. 2022. Metal decorated silica-based core-shell magnetic nanocomposite for the solid-phase microextraction of cadmium (II) with determination by high-resolution continuum source flame atomic absorption spectrometry. Instrumentation Science and Technology 50:637–53. doi:10.1080/10739149.2022.2070919.
  • Jalbani, N., R. M. Alosmanov, and M. Soylak. 2014. Use of diethylamine modified phosphorus-containing polymer for solid phase extraction of cobalt and lead in fruit samples employing flame atomic absorption spectrometry. Atomic Spectroscopy 35:163–7. doi:10.46770/AS.2014.04.004.
  • Karaagaclioglu, I. E., D. Karatas, O. Özyıldırım, and M. S. Çelik. 2022. Investigation of the interactions of arsenic with gangue minerals in colemanite calcination. Microporous and Mesoporous Materials 333:111735.
  • Karatepe, A., M. Soylak, and L. Elçi. 2011. Solid-phase extraction of some heavy metal ions on a double-walled carbon nanotube disk and determination by flame atomic absorption spectrometry. Journal of AOAC International 94 (5):1617–24. doi:10.5740/jaoacint.10-388.
  • Khalid, N. A., N. F. Shoparwe, A. H. Yusoff, A. Z. Sulaiman, A. L. Ahmad, and N. A. Azmi. 2022. Fabrication and characterization of MWCNT/Polyvinyl (PVC) polymer ınclusion membrane for zinc (II) ıon removal from aqueous solution. Membranes 12:1020. doi:10.3390/membranes12101020.
  • Kumar, A., A. Balouch, and A. A. Pathan. 2019. Synthesis, adsorption and analytical applicability of Ni-imprinted polymer for selective adsorption of Ni2+ ions from the aqueous environment. Polymer Testing 77:105871.
  • Li, G., and K. H. Row. 2020. Deep eutectic solvents skeleton typed molecularly imprinted chitosan microsphere coated magnetic graphene oxide for solid‐phase microextraction of chlorophenols from environmental water. Journal of Separation Science 43 (6):1063–70. doi: 10.1002/jssc.201901159.
  • Mehrani, Z., H. Ebrahimzadeh, and E. Moradi. 2019. Poly m-aminophenol/nylon 6/graphene oxide electrospun nanofiber as an efficient sorbent for thin film microextraction of phthalate esters in water and milk solutions preserved in baby bottle. Journal of Chromatography. A 1600:87–94. doi:10.1016/j.chroma.2019.04.057.
  • Mejía-Carmona, K., and F. M. Lanças. 2020. Modified graphene-silica as a sorbent for in-tube solid-phase microextraction coupled to liquid chromatography-tandem mass spectrometry. Determination of xanthines in coffee beverages. Journal of Chromatography. A 1621:461089. doi: 10.1016/j.chroma.2020.461089.
  • Mendil, D., O. D. Uluozlu, M. Tuzen, and M. Soylak. 2019. Multi-element determination in some foods and beverages using silica gel modified with 1-phenylthiosemicarbazide. Food Additives and Contaminants: Part A 36:1667–76.
  • Mohammadzadeh, A., M. M. Kadhim, T. Z. Taban, O. Baigenzhenov, A. Ivanets, B. Lal, N. Kumar, and A. Hosseini-Bandegharaei. 2023. Adsorption performance of Enterobacter cloacae towards U (VI) ion and application of Enterobacter cloacae/carbon nanotubes to pre-concentration and determination of low-levels of U (VI) in water samples. Chemosphere 311 (Pt 1):136804. doi:10.1016/j.chemosphere.2022.136804.
  • Mondal, S., J. Jiang, Y. Li, and G. Ouyang. 2019. Carbon and tin-based polyacrylonitrile hybrid architecture solid phase microextraction fiber for the detection and quantification of antibiotic compounds in aqueous environmental systems. Molecules 24:1670. doi:10.3390/molecules24091670.
  • Moradi, E., Z. Mehrani, and H. Ebrahimzadeh. 2020. Gelatin/sodium triphosphate hydrogel electrospun nanofiber mat as a novel nanosorbent for microextraction in packed syringe of La3+ and Tb3+ ions prior to their determination by ICP-OES. Reactive and Functional Polymers 153:104627. doi:10.1016/j.reactfunctpolym.2020.104627.
  • Murtada, K. 2020. Trends in nanomaterial-based solid-phase microextraction with a focus on environmental applications—a review. Trends in Environmental Analytical Chemistry 25:E00077. doi:10.1016/j.teac.2019.e00077.
  • Mustafai, F. A., A. Balouch, N. Jalbani, M. I. Bhanger, M. S. Jagirani, A. Kumar, and A. Tunio. 2018. Microwave-assisted synthesis of imprinted polymer for selective removal of arsenic from drinking water by applying Taguchi statistical method. European Polymer Journal 109:133–42. doi:10.1016/j.eurpolymj.2018.09.041.
  • Nazari, S., A. Mehri, and A. S. Hassannia. 2017. Fe3O4-modified graphene oxide as a sorbent for sequential magnetic solid phase extraction and dispersive liquid phase microextraction of thallium. Microchimica Acta 184:3239–46. doi:10.1007/s00604-017-2340-y.
  • Ozalp, O., and M. Soylak. 2021. Magnetic dispersive solid phase extraction of Cu (II) as 1- (2-pyridylazo)-2-naphthol chelates on Fe3O4@XAD-16. Iranian Journal of Science and Technology, Transactions A: Science 45:1971–80.
  • Ozarslan, S., M. R. Atelge, M. Kaya, and S. Ünalan. 2021. A novel tea factory waste metal-free catalyst as promising supercapacitor electrode for hydrogen production and energy storage: a dual functional material. Fuel 305:121578. doi:10.1016/j.fuel.2021.121578.
  • Pei, M., X. Shi, J. Wu, and X. Huang. 2019. Graphene reinforced multiple monolithic fiber solid-phase microextraction of phenoxyacetic acid herbicides in complex samples. Talanta 191:257–64. doi: 10.1016/j.talanta.2018.08.073.
  • Pytlakowska, K., K. Kocot, B. Hachuła, M. Pilch, R. Wrzalik, and M. Zubko. 2020. Determination of heavy metal ions by energy dispersive X-ray fluorescence spectrometry using reduced graphene oxide decorated with molybdenum disulfide as solid adsorbent. Spectrochimica Acta Part B: Atomic Spectroscopy 167:105846. doi:10.1016/j.sab.2020.105846.
  • Ruiz, F., L. Ripoll, M. Hidalgo, and A. Canals. 2019. Dispersive micro solid-phase extraction (DµSPE) with graphene oxide as adsorbent for sensitive elemental analysis of aqueous samples by laser induced breakdown spectroscopy (LIBS). Talanta 191:162–70. doi:10.1016/j.talanta.2018.08.044.
  • Santana-Mayor, Á., B. Socas-Rodríguez, M. del Mar Afonso, J. A. Palenzuela-López, and M. Á. Rodríguez-Delgado. 2018. Reduced graphene oxide-coated magnetic-nanoparticles as sorbent for the determination of phthalates in environmental samples by micro-dispersive solid-phase extraction followed by ultra-high-performance liquid chromatography tandem mass spectrometry. Journal of Chromatography. A 1565:36–47. doi:10.1016/j.chroma.2018.06.031.
  • Saraji, M., and A. Shahvar. 2017. Metal-organic aerogel as a coating for solid-phase microextraction. Analytica chimica Acta 973:51–8. doi:10.1016/j.aca.2017.04.029.
  • Şaylan, M., B. Metin, H. Akbıyık, F. Turak, G. Çetin, and S. Bakırdere. 2023. Microwave assisted effective synthesis of CdS nanoparticles to determine the copper ions in artichoke leaves extract samples by flame atomic absorption spectrometry. Journal of Food Composition and Analysis 115:104965. doi:10.1016/j.jfca.2022.104965.
  • Şaylan, M., N. E. Karlıdağ, M. Toprak, Z. Tekin, U. Balçık, E. Öztürk Er, and S. Bakırdere. 2022. Novel salicylic acid modified magnetic nanoparticles based ligandless extraction for the accurate determination of bismuth in urine samples by flame atomic absorption spectrophotometry. Analytical Letters 55:1719–30. doi:10.1080/00032719.2021.2023815.
  • Serra-Mora, P., R. Herráez-Hernández, and P. Campíns-Falcó. 2020. Bimodal copper oxide nanoparticles doped phase for the extraction of highly polar compounds by in-tube solid-phase microextraction coupled online to nano-liquid chromatography. Journal of Chromatography. A 1617:460819. doi:10.1016/j.chroma.2019.460819.
  • Shakourian, M., Y. Yamini, and M. Safari. 2020. Facile magnetization of metal–organic framework TMU-6 for magnetic solid-phase extraction of organophosphorus pesticides in water and rice samples. Talanta 218:121139. doi:10.1016/j.talanta.2020.121139.
  • Shan, X., L. Zhang, H. Ye, J. Shao, Y. Shi, S. Tan, and C. Cao. 2022. Magnetic solid phase extraction of lead ion from water samples with humic acid modified magnetic nanoparticles prior to its fame atomic absorption spectrometric detection. Microchemical Journal 179:107417. doi:10.1016/j.microc.2022.107417.
  • Shirkhanloo, H., M. K. Abbasabadi, F. Hosseini, and A. F. Zarandi. 2021. Nanographene oxide modified phenyl methanethiol nanomagnetic composite for rapid separation of aluminum in wastewaters, foods, and vegetable samples by microwave dispersive magnetic micro solid-phase extraction. Food Chemistry 347:129042.
  • Singh, H. N., and V. Laha. 2022. On Quasidifferentiable Multiobjective Fractional Programming. Iranian Journal of Science and Technology, Transactions A: Science 46:917–25. doi:10.1007/s40995-022-01309-2.
  • Sitko, R., B. Zawisza, and E. Malicka. 2013. Graphene as a new sorbent in analytical chemistry. TrAC: Trends in Analytical Chemistry 51:33–43. doi:10.1016/j.trac.2013.05.011.
  • Sorouraddin, S. M., M. A. Farajzadeh, and S. Khosroshahian. 2022. Vortex-assisted magnetic dispersive solid phase extraction using Tanacetum extract followed by dispersive liquid–liquid microextraction for the extraction and pre-concentration of Co (II) and Ni (II) from high volume of water samples. Chemical Papers 76:7177–88. doi:10.1007/s11696-022-02354-2.
  • Soylak, M. 2000. Solid phase extraction of trace metal ions in drinking water samples from Kayseri-Turkey. Journal of Trace and Microprobe Techniques 18:397–403.
  • Soylak, M. 2004. Solid phase extraction of Cu (II), Pb (II), Fe (III), Co (II), and Cr (III) on chelex‐100 column prior to their flame atomic absorption spectrometric determinations. Analytical Letters 37:1203–17. doi:10.1081/AL-120034064.
  • Soylak, M., A. Aydin, and N. Kizil. 2016. Multi-element preconcentration/separation of some metal ıons in environmental samples by using co-precipitation. Journal of AOAC International 99:273–8.
  • Soylak, M., and A. Temeltas. 2016. Solid phase extraction of Pb(II) and Cd(II) as 2,9 dimethyl-4,7-diphenyl-1,10-phenanthroline chelates on activated carbon cloth in environmental samples and their determination by flame atomic absorption spectrometry. International Journal of Environmental Analytical Chemistry 96:862–71.
  • Soylak, M., and M. Dogan. 1996. Column preconcentration of trace amounts of copper on activated carbon from natural water samples. Analytical Letters 29:635–43. doi:10.1080/00032719608000426.
  • Soylak, M., L. Elci, and M. Dogan. 1993. Determination of some trace metals in dialysis solutions by atomic absorption spectrometry after preconcentration. Analytical Letters 26:1997–2007.
  • Soylak, M., L. Elci, and M. Dogan. 1996a. Determination of some trace metal ımpurities in refined and unrefined salts after preconcentration onto activated carbon. Fresenius Environmental Bulletin 5:148–55.
  • Soylak, M., L. Elci, and M. Dogan. 1997. Determination of trace amounts of cobalt in natural water samples as 4-(2-thiazolylazo) recorcinol complex after adsorptive pre-concentration. Analytical Letters 30:623–31. doi:10.1080/00032719708001806.
  • Soylak, M., M. S. Jagirani, and F. Uzcan. 2022. Metal-doped magnetic graphene oxide nanohybrid for solid-phase microextraction of copper from environmental samples. Iranian Journal of Science and Technology, Transactions A: Science 46:807–17. doi:10.1007/s40995-022-01311-8.
  • Soylak, M., U. Şahin, and L. Elçi. 1996b. Spectrophotometric determination of molybdenum in steel samples utilizing selective sorbent extraction on Amberlite XAD-8 resin. Analytica Chimica Acta 322:111–5. doi:10.1016/0003-2670(95)00603-6.
  • Soylak, M., Y. E. Unsal, and M. Tuzen. 2011. Spectrophotometric determination of trace levels of allura red in water samples after separation and pre-concentration. Food and Chemical Toxicology: An İnternational Journal Published for the British Industrial Biological Research Association 49 (5):1183–7. doi:10.1016/j.fct.2011.02.013.
  • Sun, M., Y. Bu, J. Feng, and C. Luo. 2016. Graphene oxide reinforced polymeric ionic liquid monolith solid‐phase microextraction sorbent for high‐performance liquid chromatography analysis of phenolic compounds in aqueous environmental samples. Journal of Separation Science 39 (2):375–82. doi:10.1002/jssc.201500904.
  • Sungur, A., M. Soylak, E. Yilmaz, S. Yilmaz, and H. Ozcan. 2015. Characterization of heavy metal fractions in agricultural soils by sequential extraction procedure: the relationship between soil properties and heavy metal fractions. Soil and Sediment Contamination 24:1–15. doi:10.1080/15320383.2014.907238.
  • Taha, W. M., M. Morsy, N. A. Nada, and M. A. Ibrahim. 2022. Preparation and characterization of multiwall carbon nanotubes decorated with copper oxide. Egyptian Journal of Chemistry 65:305–12.
  • Tasmia J. S, and M. R. Jan. 2020. Eco-friendly alginate encapsulated magnetic graphene oxide beads for solid phase microextraction of endocrine disrupting compounds from water samples. Ecotoxicology and Environmental Safety 190:110099. doi:10.1016/j.ecoenv.2019.110099.
  • Tsai, P.-C., A. Pundi, K. Brindhadevi, and V. K. Ponnusamy. 2021. Novel semi-automated graphene nanosheets based pipette-tip assisted micro-solid phase extraction as eco-friendly technique for the rapid detection of emerging environmental pollutant in waters. Chemosphere 276:130031. doi:10.1016/j.chemosphere.2021.130031.
  • Tuzen, M., K. Parlar, and M. Soylak. 2005. Enrichment/separation of cadmium(II) and lead(II) in environmental samples by solid phase extraction. Journal of Hazardous Materials 121 (1-3):79–87.
  • Tuzen, M., O. D. Uluozlu, I. Karaman, and M. Soylak. 2009. Mercury(II) and methyl mercury speciation on Streptococcus pyogenes loaded dowex optipore SD-2. Journal of Hazardous Materials 169 (1-3):345–50.
  • Ulusoy, H. İ., E. Yılmaz, and M. Soylak. 2019b. Magnetic solid phase extraction of trace paracetamol and caffeine in synthetic urine and wastewater samples by a using core shell hybrid material consisting of graphene oxide/multi-walled carbon nanotube/Fe3O4/SiO2. Microchemical Journal 145:843–51. doi:10.1016/j.microc.2018.11.056.
  • Ulusoy, H. İ., S. Gülle, E. Yilmaz, and M. Soylak. 2019a. Trace determination of vitamin B12 in food samples by using Fe3O4 magnetic particles including multi-walled carbon nanotubes and nanodiamonds. Analytical Methods 11:5108–17. doi:10.1039/C9AY01504C.
  • Ünügül, T., F. U. Nigiz, and S. Karayünlü Bozbaş. 2022. Application of response surface methodology for optimization of copper removal using a novel polymeric adsorbent. Journal of Polymers and the Environment 30:4887–901. doi:10.1007/s10924-022-02569-0.
  • Uzcan, F., M. S. Jagirani, and M. Soylak. 2022. Assessment of environmental pollutants at trace levels using ionic liquids-based liquid-phase microextraction. Turkish Journal of Chemistry 46:1755–75. doi:10.55730/1300-0527.3479.
  • Wang, F., S. Liu, H. Yang, J. Zheng, J. Qiu, J. Xu, Y. Tong, F. Zhu, and G. Ouyang. 2016. Hierarchical graphene coating for highly sensitive solid phase microextraction of organochlorine pesticides. Talanta 160:217–24. doi:10.1016/j.talanta.2016.07.013.
  • Wu, J., S. Wan, O. Xu, H. Song, J. Yang, and X. Zhu. 2022. Pyridine ionic liquid functionalized bimetallic MOF solid-phase extraction coupled with high performance liquid chromatography for separation/analysis sunset yellow. RSC Advances 12 (48):30928–35. doi:10.1039/d2ra05980k.
  • Yazdi, M. N., Y. Yamini, and H. Asiabi. 2018. Fabrication of polypyrrole-silver nanocomposite for hollow fiber solid phase microextraction followed by HPLC/UV analysis for determination of parabens in water and beverages samples. Journal of Food Composition and Analysis 74:18–26. doi:10.1016/j.jfca.2018.08.006.
  • Yilmaz, E., and M. Soylak. 2020. Functionalized nanomaterials for sample preparation methods. Handbook of Nanomaterials in Analytical Chemistry, 375–413. Amsterdam, Netherlands: Elsevier.
  • Yuvali, D., I. Narin, M. Soylak, and E. Yilmaz. 2020. Green synthesis of magnetic carbon nanodot/graphene oxide hybrid material (Fe3O4@ C-nanodot@ GO) for magnetic solid phase extraction of ibuprofen in human blood samples prior to HPLC-DAD determination. Journal of Pharmaceutical and Biomedical Analysis 179:113001. doi:10.1016/j.jpba.2019.113001.
  • Zhang, S., Q. Yang, Z. Li, W. Wang, X. Zang, C. Wang, and Z. Wang. 2018. Solid phase microextraction of phthalic acid esters from vegetable oils using iron (III)-based metal-organic framework/graphene oxide coating. Food Chemistry 263:258–64. doi: 10.1016/j.foodchem.2018.04.132.
  • Zhao, G., S. Song, C. Wang, Q. Wu, and Z. Wang. 2011. Solid-phase microextraction with a novel graphene-coated fiber coupled with high-performance liquid chromatography for the determination of some carbamates in water samples. Analytical Methods 3:2929–35. doi:10.1039/c1ay05358b.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.