456
Views
6
CrossRef citations to date
0
Altmetric
Food Analysis

Microextraction Methods for the Separation-Preconcentration and Determination of Food Dyes: A Minireview

&
Pages 2473-2490 | Received 04 Dec 2022, Accepted 28 Jan 2023, Published online: 06 Feb 2023

References

  • (ANS), E. P. on F. A. and N. S. 2010. Scientific opinion on the re-evaluation of Amaranth (E 123) as a food additive. EFSA Journal 8 (7):1536. doi:10.2903/j.efsa.2010.1649.
  • Abdelghani, J. I., Y. S. Al-Degs, A. H. El-Sheikh, I. I. Fasfous, and A. A. Al-Asafrah. 2020. Quick monitoring of coloring agents in highly consumed candies using multivariate calibration. Arabian Journal of Chemistry 13 (2):4228–36. doi:10.1016/j.arabjc.2019.07.002.
  • Adam, M., T. Bajer, P. Bajerová, and K. Ventura. 2018. Modified QuEChERS approach for analysis of synthetic food dyes in jellies and smarties. Food Analytical Methods 11 (6):1619–26. doi:10.1007/s12161-017-1130-9.
  • Ahlström, L. H., C. Sparr Eskilsson, and E. Björklund. 2005. Determination of banned azo dyes in consumer goods. TrAC Trends in Analytical Chemistry 24 (1):49–56. doi:10.1016/j.trac.2004.09.004.
  • Altunay, N., E. Yıldırım, and R. Gurkan. 2018. Extraction and preconcentration of trace Al and Cr from vegetable samples by vortex-assisted ionic liquid-based dispersive liquid–liquid microextraction prior to atomic absorption spectrometric determination. Food chemistry 245:586–94. doi:10.1016/j.foodchem.2017.10.134.
  • Altunay, N., M. Tuzen, M. F. Lanjwani, and M. R. A. Mogaddam. 2022a. Optimization of a rapid and sensitive ultrasound-assisted liquid-liquid microextraction using switchable hydrophilicity solvent for extraction of β-carotene in fruit juices and vegetables. Journal of Food Composition and Analysis 114:104791. doi:10.1016/j.jfca.2022.104791.
  • Altunay, N., A. Elik, M. F. Lanjwani, and M. Tuzen. 2022b. Assessment of arsenic in water, rice and honey samples using new and green vortex-assisted liquid phase microextraction procedure based on deep eutectic solvent: Multivariate study. Microchemical Journal 179:107541. doi:10.1016/j.microc.2022.107541.
  • Altunay, N., A. Elik, M. Tuzen, M. F. Lanjwani, and M. R. A. Mogaddam. 2023. Determination and extraction of acrylamide in processed food samples using alkanol-based supramolecular solvent-assisted dispersive liquid-liquid microextraction coupled with spectrophotometer: Optimization using factorial design. Journal of Food Composition and Analysis 115:105023. doi:10.1016/j.jfca.2022.105023.
  • Asfaram, A., M. Ghaedi, H. Abidi, H. Javadian, M. Zoladl, and F. Sadeghfar. 2018. Synthesis of Fe3O4@CuS@Ni2P-CNTs magnetic nanocomposite for sonochemical-assisted sorption and pre-concentration of trace Allura Red from aqueous samples prior to HPLC-UV detection: CCD-RSM design. Ultrasonics sonochemistry 44:240–50. doi:10.1016/j.ultsonch.2018.02.011.
  • Asfaram, A., M. Ghaedi, A. Goudarzi, and M. Soylak. 2015. Comparison between dispersive liquid-liquid microextraction and ultrasound-assisted nanoparticles-dispersive solid-phase microextraction combined with microvolume spectrophotometry method for the determination of Auramine-O in water samples. RSC Advances 5 (49):39084–96. doi:10.1039/C5RA02214B.
  • Aydin, F., E. Yilmaz, and M. Soylak. 2017. A simple and novel deep eutectic solvent based ultrasound-assisted emulsification liquid phase microextraction method for malachite green in farmed and ornamental aquarium fish water samples. Microchemical Journal 132:280–5. doi:10.1016/j.microc.2017.02.014.
  • Azadkish, K., and A. Shokrollahi. 2022. Simultaneous determination and extraction of illegal dyes Sudan orange G and Sudan red 7B using ultrasonic assisted dispersive liquid–liquid microextraction based on deep eutectic solvent followed by derivative UV-VIS spectrophotometry. International Journal of Environmental Analytical Chemistry. (in press). doi:10.1080/03067319.2022.2150080.
  • Bağda, E., and M. Tüzen. 2017. A simple and sensitive vortex-assisted ionic liquid-dispersive microextraction and spectrophotometric determination of selenium in food samples. Food Chemistry 232:98–104. doi:10.1016/j.foodchem.2017.03.104.
  • Ballesteros-Gómez, A., and S. Rubio. 2012. Environment-responsive alkanol-based supramolecular solvents: Characterization and potential as restricted access property and mixed-mode extractants. Analytical chemistry 84 (1):342–9.
  • Ballesteros-Gómez, A., M. D. Sicilia, and S. Rubio. 2010. Supramolecular solvents in the extraction of organic compounds. A review. Analytica chimica Acta 677 (2):108–30.
  • Barfi, B., A. Asghari, M. Rajabi, and S. Sabzalian. 2015. Organic solvent-free air-assisted liquid-liquid microextraction for optimized extraction of illegal azo-based dyes and their main metabolite from spices, cosmetics and human bio-fluid samples in one step. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences 998:15–25. doi:10.1016/j.jchromb.2015.06.016.
  • Bulut, V. N., C. Duran, A. Gundogdu, M. Soylak, N. Yildirim, and M. Tufekci. 2010. A triazole derivative as a new acid-base indicator. Bulletin of the Chemical Society of Ethiopia 24 (3):457–60. doi:10.4314/bcse.v24i3.60694.
  • Chan, C. H., R. Yusoff, G. C. Ngoh, and F. W. L. Kung. 2011. Microwave-assisted extractions of active ingredients from plants. Journal of Chromatography. A 1218 (37):6213–25. doi:10.1016/j.chroma.2011.07.040.
  • Chen, M., Y. Fan, C. Li, and Y. Zhu. 2008. Analysis of para red and sudan dyes in the chili pepper, chili oil and food additive using ionic liquids extraction and high performance liquid chromatography. Abstracts of Papers, 236th ACS National Meeting, Philadelphia, PA, United States, August 17-21, 236, ANYL-071.
  • Cheng, Y., J. Nie, J. Li, H. Liu, Z. Yan, and L. Kuang. 2019. Synthesis and characterization of core–shell magnetic molecularly imprinted polymers for selective recognition and determination of quercetin in apple samples. Food chemistry 287:100–6. doi:10.1016/j.foodchem.2019.02.069.
  • Corradini, M. G. 2018. Synthetic food colors. Encyclopedia of Food Chemistry 2:291–6. doi:10.1016/B978-0-08-100596-5.21606-5.
  • Duman, S., Z. Erbas, and M. Soylak. 2020. Ultrasound-assisted magnetic solid phase microextraction of patent blue V on magnetic multiwalled carbon nanotubes prior to its spectrophotometric determination. Microchemical Journal 159:105468. doi:10.1016/j.microc.2020.105468.
  • Duman, S., and M. Soylak. 2023. Amine-based vortex assisted liquid-phase microextraction procedure for traces of tartrazine (E102) in food and water samples. Journal of the Iranian Chemical Society 20 (1):69–78. doi:10.1007/s13738-022-02646-0.
  • Ekinci, S., Z. İlter, S. Ercan, E. Cınar, and R. Cakmak. 2021. Magnetite nanoparticles grafted with murexide-terminated polyamidoamine dendrimers for removal of lead (II) from aqueous solution: Synthesis, characterization, adsorption and antimicrobial activity studies. Heliyon 7 (3):e06600. e06600. doi:10.1016/j.heliyon.2021.e06600.
  • Erbas, Z., and M. Soylak. 2020. A green and simple liquid-phase microextraction based on deep eutectic solvent for the erythrosine prior to its UV–VIS spectrophotometric detection. Journal of the Iranian Chemical Society 17 (10):2675–81. doi:10.1007/s13738-020-01957-4.
  • Fan, Y., M. Chen, C. Shentu, F. El-Sepai, K. Wang, Y. Zhu, and M. Ye. 2009. Ionic liquids extraction of Para Red and Sudan dyes from chilli powder, chilli oil and food additive combined with high performance liquid chromatography. Analytica Chimica Acta 650 (1):65–9. doi:10.1016/j.aca.2009.03.025
  • Faraji, M. 2019. Determination of some red dyes in food samples using a hydrophobic deep eutectic solvent-based vortex assisted dispersive liquid-liquid microextraction coupled with high performance liquid chromatography. Journal of Chromatography. A 1591:15–23. doi:10.1016/j.chroma.2019.01.022
  • Farhadi, K., R. Maleki, N. M. Nezhad, and N. Samadi. 2010. Spectrophotometric determination of malachite green residue in water samples after preconcentration on surfactant-coated alumina. Spectroscopy Letters 43 (2):101–7. doi:10.1080/00387010903278309.
  • Filik, H., B. D. Oztürk, M. Doğutan, G. Gümüş, and R. Apak. 1997. Separation and preconcentration of iron(II) and iron(III) from natural water on a melamine-formaldehyde resin. Talanta 44 (5):877–84. doi:10.1016/s0039-9140(96)02132-7
  • Filik, H., D. Giray, B. Ceylan, and R. Apak. 2011. A novel fiber optic spectrophotometric determination of nitrite using Safranin O and cloud point extraction. Talanta 85 (4):1818–24. doi:10.1016/j.talanta.2011.07.052
  • Ghasempour, Z., M. Alizadeh-Khaledabad, M. R. Vardast, and M. Rezazad-Bari. 2017. Synthesis of a molecularly imprinted polymer for the selective recognition of carmoisine (Azorubin E122) from pomegranate juice. Journal of Separation Science 40 (4):962–70. doi:10.1002/jssc.201600855
  • Gundogdu, A., V. N. Bulut, C. Duran, B. Kemer, O. Bekircan, and M. Soylak. 2008. A new pH indicator based on 2,5-diaryl-1-salicylideneamino-1,3,4-triazole derivative. Chinese Journal of Chemistry 26 (1):143–5. doi:10.1002/cjoc.200890009.
  • Guo, J., H. Wu, L. Du, and Y. Fu. 2013. Determination of brilliant blue FCF in food and cosmetic samples by ionic liquid independent disperse liquid-liquid microextraction. Analytical Methods 5 (16):4021–6. doi:10.1039/c3ay40362a.
  • Gupta, M., and A. Dsouza. 2020. Salting-out homogeneous liquid-liquid microextraction for the spectrophotometric determination of iodate in food grade salt. Journal of Food Composition and Analysis 87:103396. doi:10.1016/j.jfca.2019.103396.
  • Filik, H., and A. Asiye Aslıhan. 2021. Multi-walled carbon nanotubes magnetic composite as an adsorbent for preconcentration and determination of trace level vanadium in water samples. Journal of Analytical Chemistry 76 (2):156–64. doi:10.1134/S106193482102009X.
  • He, L., Y. Su, B. Fang, X. Shen, Z. Zeng, and Y. Liu. 2007. Determination of Sudan dye residues in eggs by liquid chromatography and gas chromatography-mass spectrometry. Analytica chimica Acta 594 (1):139–46. doi:10.1016/j.aca.2007.05.021
  • He, X., Y. Chen, H. Li, T. Zou, M. Huang, H. Li, and E. Xia. 2015. Analysis of Sudan I in food by QuEChERS combined with ultrasound-assisted dispersive liquid-liquid microextraction with solidification of floating organic drop (UADLLME-SFO) prior to HPLC-PAD. Food Science and Technology Research 21 (5):659–64. doi:10.3136/fstr.21.659.
  • Ho, Y. M., Y. K. Tsoi, and K. S. Y. Leung. 2013. Ionic-liquid-based dispersive liquid-liquid microextraction for high-throughput multiple food contaminant screening. Journal of Separation Science 36 (23):3791–8. doi:10.1002/jssc.201300807
  • Hu, M., L. Wu, Y. Song, Z. Li, Q. Ma, H. Zhang, and Z. Wang. 2016. Determination of Sudan dyes in juice samples via solidification of ıonic liquid in microwave-assisted liquid-liquid microextraction followed by high-performance liquid chromatography. Food Analytical Methods 9 (7):2124–32. doi:10.1007/s12161-015-0389-y.
  • Hu, X., Q. Cai, Y. Fan, T. Ye, Y. Cao, and C. Guo. 2012a. Molecularly imprinted polymer coated solid-phase microextraction fibers for determination of Sudan I-IV dyes in hot chili powder and poultry feed samples. Journal of Chromatography. A 1219:39–46. doi:10.1016/j.chroma.2011.10.089
  • Hu, X., Y. Fan, Y. Zhang, G. Dai, Q. Cai, Y. Cao, and C. Guo. 2012b. Molecularly imprinted polymer coated solid-phase microextraction fiber prepared by surface reversible addition-fragmentation chain transfer polymerization for monitoring of Sudan dyes in chilli tomato sauce and chilli pepper samples. Analytica Chimica Acta 731:40–8. doi:10.1016/j.aca.2012.04.013
  • Kachangoon, R., J. Vichapong, Y. Santaladchaiyakit, R. Burakham, and S. Srijaranai. 2023. Sample preparation approach by ın situ formation of supramolecular solvent microextraction for enrichment of neonicotinoid ınsecticide residues. Food Analytical Methods 16 (2):330–9. doi:10.1007/s12161-022-02417-w.
  • Karatepe, A., C. Akalin, and M. Soylak. 2016. Solid-phase extraction of some food dyes on sea sponge column and determination by UV–vis spectrophotometer. Desalination and Water Treatment 57 (53):25822–9. doi:10.1080/19443994.2016.1153981.
  • Karatepe, A., C. Akalin, and M. Soylak. 2017. Spectrophotometric determination of carmoisine after cloud point extraction using Triton X-114. Turkısh Journal of Chemistry 41 (2):256–62. doi:10.3906/kim-1606-45.
  • Karbalaie, B., M. Rajabi, and B. Fahimirad. 2021. Polymerisation of dopamine on the carbon graphite nitride nanosheets as an effective adsorbent in determination of metal ions using effervescent-assisted dispersive micro solid-phase extraction method. International Journal of Environmental Analytical Chemistry 101 (15):2742–60. doi:10.1080/03067319.2020.1711893.
  • Karlıdağ, N. E., R. Demirel, H. Serbest, F. Turak, and S. Bakırdere. 2023. Determination of cobalt in chamomile tea samples at trace levels by flame atomic absorption spectrophotometry after poly(vinyl alcohol)-magnetic hydrogel based dispersive solid phase extraction. Analytical Methods 15 (1):56–62. doi:10.1039/D2AY01493A.
  • Khan, R., P. Bhawana, and M. H. Fulekar. 2013. Microbial decolorization and degradation of synthetic dyes: A review. Reviews in Environmental Science and Bio/Technology 12 (1):75–97. doi:10.1007/s11157-012-9287-6.
  • Kılınc, E., K. S. Celik, and H. Bilgetekin. 2018. γ-Fe2O3 magnetic nanoparticle functionalized with carboxylated multi walled carbon nanotube for magnetic solid phase extractions and determinations of Sudan dyes and Para Red in food samples. Food Chemistry 242:533–7. doi:10.1016/j.foodchem.2017.09.039.
  • Lanjwani, M. F., N. Altunay, and M. Tuzen. 2023. Preparation of fatty acid-based ternary deep eutectic solvents: Application for determination of tetracycline residue in water, honey and milk samples by using vortex-assisted microextraction. Food chemistry 400:134085.
  • Li, L., H. Zheng, L. Guo, L. Qu, and L. Yu. 2019. A sensitive and selective molecularly imprinted electrochemical sensor based on Pd-Cu bimetallic alloy functionalized graphene for detection of amaranth in soft drink. Talanta 197:68–76. doi:10.1016/j.talanta.2019.01.009
  • Li, Q. L., L. L. Wang, X. Wang, M. L. Wang, and R. S. Zhao. 2016. Magnetic metal-organic nanotubes: An adsorbent for magnetic solid-phase extraction of polychlorinated biphenyls from environmental and biological samples. Journal of Chromatography. A 1449:39–47.
  • Li, R., Z. T. Jiang, and Y. H. Liu. 2008. Direct solid-phase spectrophotometric determination of tartrazine in soft drinks using β-cyclodextrin polymer as support. Journal of Food and Drug Analysis 16 (5):91–6. doi:10.38212/2224-6614.2327.
  • Liu, F. J., C. T. Liu, W. Li, and A. N. Tang. 2015. Dispersive solid-phase microextraction and capillary electrophoresis separation of food colorants in beverages using diamino moiety functionalized silica nanoparticles as both extractant and pseudostationary phase. Talanta 132:366–72. doi:10.1016/j.talanta.2014.09.014
  • Liu, W., B. Zong, X. Wang, J. Cai, and J. Yu. 2019. A highly efficient vortex-assisted liquid–liquid microextraction based on natural deep eutectic solvent for the determination of Sudan I in food samples. RSC advances 9 (30):17432–9.
  • Martins, N., C. L. Roriz, P. Morales, L. Barros, and I. C. Ferreira. 2016. Food colorants: Challenges, opportunities and current desires of agro-industries to ensure consumer expectations and regulatory practices. Trends in Food Science & Technology 52:1–15. doi:10.1016/j.tifs.2016.03.009.
  • Menghwar, P., E. Yilmaz, and M. Soylak. 2018. Development of an ultrasonic-assisted restricted access supramolecular solvent-based liquid phase microextraction (UA-RAS-LPME) method for separation-preconcentration and UV-VIS spectrophotometric detection of curcumin. Separation Science and Technology 53 (16):2612–21. doi:10.1080/01496395.2018.1462389.
  • Nemati, M., M. Tuzen, M. A. Farazajdeh, S. Kaya, and M. R. A. Mogaddam. 2022. Development of dispersive solid-liquid extraction method based on organic polymers followed by deep eutectic solvents elution; application in extraction of some pesticides from milk samples prior to their determination by HPLC-MS/MS. Analytica chimica Acta 1199:339570.
  • Oka, H., Y. Ikai, T. Ohno, N. Kawamura, J. Hayakawa, K. Harada, and M. Suzuki. 1994. Identification of unlawful food dyes by thin-layer chromatography-fast atom bombardment mass spectrometry. Journal of Chromatography. A 674 (1-2):301–7. doi:10.1016/0021-9673(94)85235-9
  • Olgun, F. A. O., B. D. Ozturk, and R. Apak. 2012. Determination of synthetic food colorants in water-soluble beverages ındividually by HPLC and totally by Ce(IV)-oxidative spectrophotometry. Food Analytical Methods 5 (6):1335–41. doi:10.1007/s12161-012-9384-8.
  • Ozalp, O., O. Kaya, and M. Soylak. 2023. Cloud point microextraction of Sudan IV from food and cosmetics with determination by spectrophotometry. Analytical Letters 56 (3):464–75. 2023). doi:10.1080/00032719.2022.2047998.
  • Prado, M. A., L. F. V. Boas, M. R. Bronze, and H. T. Godoy. 2006. Validation of methodology for simultaneous determination of synthetic dyes in alcoholic beverages by capillary electrophoresis. Journal of Chromatography. A 1136 (2):231–6. doi:10.1016/j.chroma.2006.09.071
  • Qi, P., T. Zeng, Z. Wen, X. Liang, and X. Zhang. 2011. Interference-free simultaneous determination of Sudan dyes in chili foods using solid phase extraction coupled with HPLC-DAD. Food Chemistry 125 (4):1462–7. doi:10.1016/j.foodchem.2010.10.059.
  • Rajabi, M., S. Sabzalian, B. Barfi, S. Arghavani-Beydokhti, and A. Asghari. 2015. In-line micro-matrix solid-phase dispersion extraction for simultaneous separation and extraction of Sudan dyes in different spices. Journal of Chromatography. A 1425:42–50. doi:10.1016/j.chroma.2015.11.017
  • Rovina, K., S. Siddiquee, and S. M. Shaarani. 2017. A review of extraction and analytical methods for the determination of tartrazine (E 102) in foodstuffs. Critical reviews in Analytical Chemistry 47 (4):309–24. doi:10.1080/10408347.2017.1287558
  • Safarik, I., S. Mullerova, and K. Pospiskova. 2019. Semiquantitative determination of food acid dyes by magnetic textile solid phase extraction followed by image analysis. Food Chemistry 274:215–9. doi:10.1016/j.foodchem.2018.08.125.
  • Salamat, Q., Y. Yamini, M. Moradi, M. Karimi, and M. Nazraz. 2018. Novel generation of nano-structured supramolecular solvents based on an ionic liquid as a green solvent for microextraction of some synthetic food dyes. New Journal of Chemistry 42 (23):19252–9. doi:10.1039/C8NJ03943G.
  • Sereshti, H., S. S. Jazani, N. Nouri, and G. Shams. 2020. Dispersive liquid–liquid microextraction based on hydrophobic deep eutectic solvents: Application for tetracyclines monitoring in milk. Microchemical Journal 158:105269. doi:10.1016/j.microc.2020.105269.
  • Şenol, Z. M., Ü. D. Gül, and S. Şimşek. 2022. Bioremoval of Safranin O dye by the identified lichen species called Evernia prunastri biomass; biosorption optimization, isotherms, kinetics, and thermodynamics. Biomass Conversion and Biorefinery 12 (9):4127–37. doi:10.1007/s13399-020-01216-9.
  • Senol, Z. M. 2022. Effective biosorption of Allura red dye from aqueous solutions by the dried-lichen (Pseudoevernia furfuracea) biomass. International Journal of Environmental Analytical Chemistry 102:4550–64. doi:10.1080/03067319.2020.1785439.
  • Sha, O., X. Zhu, Y. Feng, and W. Ma. 2015. Aqueous two-phase based on ionic liquid liquid-liquid microextraction for simultaneous determination of five synthetic food colourants in different food samples by high-performance liquid chromatography. Food chemistry 174:380–6. doi:10.1016/j.foodchem.2014.11.068
  • Shishov, A., A. Pochivalov, I. Dubrovsky, and A. Bulatov. 2023. Deep eutectic solvents with low viscosity for automation of liquid-phase microextraction based on lab-in-syringe system: Separation of Sudan dyes. Talanta 255:124243. doi:10.1016/j.talanta.2022.124243
  • Shishov, A., E. Nizov, and A. Bulatov. 2023b. Microextraction of melamine from dairy products by thymol-nonanoic acid deep eutectic solvent for high-performance liquid chromatography-ultraviolet determination. Journal of Food Composition and Analysis 116:105083. doi:10.1016/j.jfca.2022.105083.
  • Siangproh, W., K. Sonamit, S. Chaiyo, and O. Chailapakul. 2013. Fast determination of Sudan I-IV in chili products using automated on-line solid phase extraction coupled with liquid chromatography-mass spectrometry. Analytical Letters 46 (11):1705–17. doi:10.1080/00032719.2012.725189.
  • Sirajudheen, P., N. C. Poovathumkuzhi, S. Vigneshwaran, B. M. Chelaveettil, and S. Meenakshi. 2021. Applications of chitin and chitosan based biomaterials for the adsorptive removal of textile dyes from water—A comprehensive review. Carbohydrate polymers 273:118604.
  • Sivrikaya Ozak, S., and Y. Yılmaz. 2020. Ultrasound-assisted hydrophobic deep eutectic solvent based solid-liquid microextraction of Sudan dyes in spice samples. Spectrochimica acta. Part A, Molecular and Biomolecular Spectroscopy 236:118353. doi:10.1016/j.saa.2020.118353
  • Soylak, M., L. Elci, and M. Dogan. 1996a. Determination of some trace metal ımpurities in refined and unrefined salts after preconcentration onto activated carbon. Fresenius Environmental Bulletin 5:148–55.
  • Soylak, M., U. Şahin, and L. Elçi. 1996b. Spectrophotometric determination of molybdenum in steel samples utilizing selective sorbent extraction on Amberlite XAD-8 resin. Analytica Chimica Acta 322 (1-2):111–5. doi:10.1016/0003-2670(95)00603-6.
  • Soylak, M., and L. Elci. 2000. Solid phase extraction of trace metal ıons in drinking water samples from Kayseri-Turkey. Journal of Trace and Microprobe Techniques 18:397–403.
  • Soylak, M., and Y. E. Unsal. 2011. Solid phase extraction of heavy metal ıons on bucky tubes disk in natural water and herbal plant samples. Environmental Monitoring and Assessment 181 (1–4):577–86. doi:10.1007/s10661-010-1852-2.
  • Soylak, M., Y. E. Unsal, and M. Tuzen. 2011a. Spectrophotometric determination of trace levels of allura red in water samples after separation and preconcentration. Food and Chemical Toxicology : An İnternational Journal Published for the British Industrial Biological Research Association 49 (5):1183–7. doi:10.1016/j.fct.2011.02.013
  • Soylak, M., Y. E. Unsal, E. Yilmaz, and M. Tuzen. 2011b. Determination of rhodamine B in soft drink, waste water and lipstick samples after solid phase extraction. Food and Chemical Toxicology : An İnternational Journal Published for the British Industrial Biological Research Association 49 (8):1796–9. doi:10.1016/j.fct.2011.04.030
  • Sricharoen, P., N. Limchoowong, T. Sripakdee, P. Nuengmatcha, and S. Chanthai. 2017a. Electrolyte-assisted microemulsion breaking in vortex-agitated solidified floating organic drop microextraction for preconcentration and analysis of Sudan dyes in chili products. Analytical Methods 9 (25):3810–8. doi:10.1039/c7ay01133d.
  • Sricharoen, P., N. Limchoowong, S. Techawongstien, and S. Chanthai. 2017b. New approach applying a pet fish air pump in liquid-phase microextraction for the determination of Sudan dyes in food samples by HPLC. Journal of Separation Science 40 (19):3848–56. doi:10.1002/jssc.201700642
  • Sricharoen, P., N. Limchoowong, S. Techawongstien, and S. Chanthai. 2019. Ultrasound-assisted emulsification microextraction coupled with salt-induced demulsification based on solidified floating organic drop prior to HPLC determination of Sudan dyes in chili products. Arabian Journal of Chemistry 12 (8):5223–33. doi:10.1016/j.arabjc.2016.12.020.
  • Sun, S., Y. Wang, W. Yu, T. Zhao, S. Gao, M. Kang, Y. Zhang, H. Zhang, and Y. Yu. 2011. Determination of sudan dyes in red wine and fruit juice using ionic liquid-based liquid-liquid microextraction and high-performance liquid chromatography. Journal of Separation Science 34 (14):1730–7. doi:10.1002/jssc.201100037
  • Sun, T., M. Wang, D. Wang, and Z. Du. 2020. Solid-phase microextraction based on nickel-foam@polydopamine followed by ion mobility spectrometry for on-site detection of Sudan dyes in tomato sauce and hot-pot sample. Talanta 207:120244. doi:10.1016/j.talanta.2019.120244
  • Sunday, N. F., and E. J. Ifeoma. 2021. Hydrothermal synthesis of fluorescent schiff base functionalized carbon dot composite for the removal of Cd(II) ions from aqueous solution: Optical, equilibrium and kinetic studies. Journal of the Turkish Chemical Society, Section A: Chemistry 8 (1):137–56. doi:10.18596/jotcsa.775739.
  • Supaka, N., K. Juntongjin, S. Damronglerd, M. L. Delia, and P. Strehaiano. 2004. Microbial decolorization of reactive azo dyes in a sequential anaerobic-aerobic system. Chemical Engineering Journal 99 (2):169–76. doi:10.1016/j.cej.2003.09.010.
  • Tang, B., C. Xi, Y. Zou, G. Wang, X. Li, L. Zhang, D. Chen, and J. Zhang. 2014. Simultaneous determination of 16 synthetic colorants in hotpot condiment by high performance liquid chromatography. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences 960:87–91. doi:10.1016/j.jchromb.2014.04.026
  • Taziki, M., F. Shemirani, and B. Majidi. 2012. Robust ionic liquid against high concentration of salt for preconcentration and determination of rhodamine B. Separation and Purification Technology 97:216–20. doi:10.1016/j.seppur.2012.02.029.
  • Topuz, B., F. Batmaz, O. Kulkoyluoglu, and C. Capraz. 2021. First usage of ostracod species (Herpetocypris brevicaudata) carapace as a biosorbent with XAD-4 resin to determine Co(II). Cu(II) and Mn(II) Trace Metal İons. Microchemical Journal 167:106335. doi:10.1016/j.microc.2021.106335.
  • Unsal, Y. E., M. Soylak, and M. Tuzen. 2015. Ultrasound-assisted ionic liquid-based dispersive liquid–liquid microextraction for preconcentration of patent blue V and its determination in food samples by UV–visible spectrophotometry. Environmental monitoring and Assessment 187 (4):203. doi:10.1007/s10661-015-4427-4
  • Unsal, Y. E., M. Tuzen, and M. Soylak. 2019. Ultrasound-assisted ionic liquid-dispersive liquid–liquid of curcumin in food samples microextraction and its spectrophotometric determination. Journal of AOAC International 102 (1):217–21.
  • Ustun Ozgur, M., and I. Koyuncu. 2002. The simultaneous determination of Quinoline Yellow (E-104) and Sunset Yellow (E-110) in syrups and tablets by second derivative spectrophotometry. Turkish Journal of Chemistry 26 (4):501–8.
  • Wang, Z., L. Zhang, N. Li, L. Lei, M. Shao, X. Yang, Y. Song, A. Yu, H. Zhang, and F. Qiu. 2014. Ionic liquid-based matrix solid-phase dispersion coupled with homogeneous liquid-liquid microextraction of synthetic dyes in condiments. Journal of Chromatography. A 1348:52–62. doi:10.1016/j.chroma.2014.04.086
  • Xing, Y., M. Meng, H. Xue, T. Zhang, Y. Yin, and R. Xi. 2012. Development of a polyclonal antibody-based enzyme-linked immunosorbent assay (ELISA) for detection of Sunset Yellow FCF in food samples. Talanta 99:125–31. doi:10.1016/j.talanta.2012.05.029
  • Xu, B., D. Song, Y. Wang, Y. Gao, B. Cao, H. Zhang, and Y. Sun. 2014. In situ ionic-liquid-dispersive liquid-liquid microextraction of Sudan dyes from liquid samples. Journal of Separation Science 37 (15):1967–73. doi:10.1002/jssc.201400317
  • Xu, X., M. Zhang, L. Wang, S. Zhang, M. Liu, N. Long, X. Qi, Z. Cui, and L. Zhang. 2016. Determination of rhodamine B in food using ıonic liquid–coated multiwalled carbon nanotube–based ultrasound-assisted dispersive solid-phase microextraction followed by high-performance liquid chromatography. Food Analytical Methods 9 (6):1696–705. doi:10.1007/s12161-015-0345-x.
  • Yakupova, Z., A. Yakubenko, P. Bogdanova, P. Godunov, C. Vakh, S. Garmonov, and A. Bulatov. 2023. Solidified floating organic drop microextraction procedure based on deep eutectic solvent for the determination of melatonin in pharmaceuticals and dietary supplements. Microchemical Journal 187: 108373. doi:10.1016/j.microc.2022.108373.
  • Yan, H., J. Qiao, Y. Pei, T. Long, W. Ding, and K. Xie. 2012. Molecularly imprinted solid-phase extraction coupled to liquid chromatography for determination of Sudan dyes in preserved beancurds. Food Chemistry 132 (1):649–54. doi:10.1016/j.foodchem.2011.10.105
  • Yan, H., J. Qiao, H. Wang, G. Yang, and K. H. Row. 2011. Molecularly imprinted solid-phase extraction combined with ultrasound-assisted dispersive liquid-liquid microextraction for the determination of four Sudan dyes in sausage samples. The Analyst 136 (12):2629–34. doi:10.1039/c0an00951b
  • Yu, C., Q. Liu, L. Lan, and B. Hu. 2008. Comparison of dual solvent-stir bars microextraction and U-shaped hollow fiber-liquid phase microextraction for the analysis of Sudan dyes in food samples by high-performance liquid chromatography-ultraviolet/mass spectrometry. Journal of Chromatography. A 1188 (2):124–31. doi:10.1016/j.chroma.2008.02.065
  • Zarghampour, F., Y. Yamini, E. A. Dil, A. Shokrollahi, and G. Javadian. 2023. A new microfluidic-chip device followed by sensitive image analysis of smart phone for simultaneous determination of dyes with different acidic–basic properties. Talanta 254:124168. doi:10.1016/j.talanta.2022.124168
  • Zhang, K., C. Liu, S. Li, Y. Wang, G. Zhu, and J. Fan. 2020. Vortex-assisted liquid-liquid microextraction based on a hydrophobic deep eutectic solvent for the highly efficient determination of Sudan I in food samples. Analytical Letters 53 (8):1204–1217. doi:10.1080/00032719.2019.1700422.
  • Zhang, L., H. Wu, Z. Liu, N. Gao, L. Du, and Y. Fu. 2015. Ionic liquid-magnetic nanoparticle microextraction of safranin T in food samples. Food Analytical Methods 8 (3):541–8.
  • Zhang, R., M. Zhang, Y. Zhang, H. Yan, X. Li, and W. H. Xie. 2019. The simultaneous detection of food dyes from different samples in a 96-well plate by spectrophotometry. Analytical Methods 11 (45):5793–802. doi:10.1039/c9ay01810g.
  • Zhou, Z., Y. Fu, Q. Qin, X. Lu, X. Shi, C. Zhao, and G. Xu. 2018. Synthesis of magnetic mesoporous metal-organic framework-5 for the effective enrichment of malachite green and crystal violet in fish samples. Journal of Chromatography. A 1560:19–25. doi:10.1016/j.chroma.2018.05.016

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.