232
Views
4
CrossRef citations to date
0
Altmetric
Nanotechnology

Green Synthesis and Encapsulation of Superparamagnetic Magnetite for Mercury (II) Removal: Adsorption Isotherms, Adsorption Kinetics, and Thermodynamic Studies

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 2505-2521 | Received 09 Dec 2022, Accepted 06 Feb 2023, Published online: 16 Feb 2023

References

  • Ahmad, I., U. Farwa, Z. U. H. Khan, M. Imran, M. S. Khalid, B. Zhu, A. Rasool, G. M. Shah, M. Tahir, M. Ahmed, et al. 2022. Biosorption and health risk assessment of arsenic contaminated water through cotton stalk biochar. Surfaces and Interfaces 29:101806. doi:10.1016/j.surfin.2022.101806.
  • Ahmadi, M., H. Rahmani, A. Takdastan, N. Jaafarzadeh, and A. Mostoufi. 2016. A novel catalytic process for degradation of bisphenol a from aqueous solutions: A synergistic effect of nano-Fe3O4@Alg-Fe on O3/H2O2. Process Safety and Environmental Protection 104:413–21. doi:10.1016/j.psep.2016.09.008.
  • Allouche, F. N., E. Guibal, and N. Mameri. 2014. Preparation of a new chitosan-based material and its application for mercury sorption. Colloids and Surfaces A: Physicochemical and Engineering Aspects 446:224–32. doi:10.1016/j.colsurfa.2014.01.025.
  • Alp, H., M. Ince, O. Kaplan Ince, and A. Onal. 2020. Evaluation the weekly intake of some wild edible indigenous mushrooms collected in different regions in Tunceli, Turkey. Biological Trace Element Research 195 (1):239–49. doi:10.1007/s12011-019-01814-3.
  • Arshadi, M., F. Mousavinia, A. Khalafi-Nezhad, H. Firouzabadi, and A. Abbaspourrad. 2017. Adsorption of mercury ions from wastewater by a hyperbranched and multi-functionalized dendrimer modified mixed-oxides nanoparticles. Journal of Colloid and İnterface Science 505:293–306. doi:10.1016/j.jcis.2017.05.052.
  • Bayuo, J., K. B. Pelig-Ba, and M. A. Abukari. 2019. Optimization of adsorption parameters for effective removal of lead (II) from aqueous solution. Physical Chemistry: An Indian Journal 14 (1):1–25.
  • Bayuo, J., M. A. Abukari, and K. B. Pelig-Ba. 2020. Optimization using central composite design (CCD) of response surface methodology (RSM) for biosorption of hexavalent chromium from aqueous media. Applied Water Science 10 (6):135. doi:10.1007/s13201-020-01213-3.
  • Beni, A. A., and A. Esmaeili. 2020. Biosorption, an efficient method for removing heavy metals from industrial effluents: A review. Environmental Technology & Innovation 17:100503. doi:10.1016/j.eti.2019.100503.
  • Bhatt, R., and P. Padmaj. 2019. A chitosan-thiomer polymer for highly efficacious adsorption of mercury. Carbohydrate Polymers 207:663–74. doi:10.1016/j.carbpol.2018.12.018.
  • Dubey, R., J. Bajpai, and A. K. Bajpai. 2016. Chitosan-alginate nanoparticles (CANPs) as potential nanosorbent for removal of Hg (II) ions. Environmental Nanotechnology, Monitoring & Management 6:32–44. doi:10.1016/j.enmm.2016.06.008.
  • Esmaeili, A., and N. A. Hadad. 2015. Preparation of ZnFe2O4–chitosan-doxorubicin hydrochloride nanoparticles and investigation of their hyperthermic heat-generating characteristics. Ceramics International 41 (6):7529–35. doi:10.1016/j.ceramint.2015.02.075.
  • Fakhri, A. 2015. Investigation of mercury (II) adsorption from aqueous solution onto copper oxide nanoparticles: Optimization using response surface methodology. Process Safety and Environmental Protection 93:1–8. doi:10.1016/j.psep.2014.06.003.
  • Fathollahi, A., S. J. Coupe, A. H. El-Sheikh, and L. A. Sañudo-Fontaneda. 2020. The biosorption of mercury by permeable pavement biofilms in stormwater attenuation. The Science of the Total Environment 741:140411. doi:10.1016/j.scitotenv.2020.140411.
  • Foroutan, R., H. Esmaeili, A. M. Sanati, M. Ahmadi, and B. Ramavandi. 2018. Adsorptive removal of Pb (II), Ni (II), and Cd (II) from aqueous media and leather wastewater using Padinasanctae-crucis biomass. Desalınatıon and Water Treatment 135:236–46. doi:10.5004/dwt.2018.23179.
  • Gautam, R. K., A. Mudhoo, G. Lofrano, and M. C. Chattopadhyaya. 2014. Biomass-derived biosorbents for metal ions sequestration: Adsorbent modification and activation methods and adsorbent regeneration. Journal of Environmental Chemical Engineering 2 (1):239–59. doi:10.1016/j.jece.2013.12.019.
  • Hadiani, M. R., K. Khosravi-Darani, N. Rahimifard, and H. Younesi. 2018. Assessment of mercury biosorption by Saccharomyces cerevisiae: Response surface methodology for optimization of low Hg (II) concentrations. Journal of Environmental Chemical Engineering 6 (4):4980–7. doi:10.1016/j.jece.2018.07.034.
  • Ince, M., O. Kaplan Ince, E. Asam, and A. Onal. 2017. Using food waste biomass as effective adsorbents in water and wastewater treatment for Cu (II) removal. Atomic Spectroscopy 38 (5):142–8. doi:10.46770/AS.2017.05.004.
  • Javid, A., A. Roudbari, N. Yousefi, M. A. Fard, B. Barkdoll, S. S. Talebi, S. Nazemi, M. Ghanbarian, and S. K. Ghadiri. 2020. Modeling of chromium (VI) removal from aqueous solution using modified green-graphene: RSM-CCD approach, optimization, isotherm, and kinetic studies. Journal of Environmental Health Science & Engineering 18 (2):515–29. doi:10.1007/s40201-020-00479-8.
  • Kaçar, Y., Ç. Arpa, S. Tan, A. Denizli, Ö. Genç, and M. Y. Arica. 2002. Biosorption of Hg (II) and Cd (II) from aqueous solutions: Comparison of biosorptive capacity of alginate and immobilized live and heat inactivated Phanerochaete chrysosporium. Process Biochemistry 37 (6):601–10. doi:10.1016/S0032-9592(01)00248-5.
  • Kaplan Ince, O., B. Aydogdu, H. Alp, and M. Ince. 2021. Experimental design approach for ultra-fast nickel removal by novel bio-nanocomposite material. Advances in Nano Research 10 (1):77–90. doi:10.12989/anr.2021.10.1.077.
  • Kenawy, I. M. M., Y. G. Abou El-Reash, M. M. Hassanien, N. R. Alnagar, and W. I. Mortada. 2018. Use of microwave irradiation for modification of mesoporous silica nanoparticles by thioglycolic acid for removal of cadmium and mercury. Microporous and Mesoporous Materials 258:217–27. doi:10.1016/j.micromeso.2017.09.021.
  • Kumar, M., A. K. Singh, and M. Sikandar. 2020. Biosorption of Hg (II) from aqueous solution using algal biomass: Kinetics and isotherm studies. Heliyon 6 (1):e03321. doi:10.1016/j.heliyon.2020.e03321.
  • Kurnaz Yetim, N., F. Kurşun Baysak, M. M. Koç, and D. Nartop. 2021. Synthesis and characterization of Au and Bi2O3 decorated Fe3O4@PAMAM dendrimer nanocomposites for medical applications. Journal of Nanostructure in Chemistry 11 (4):589–99. doi:10.1007/s40097-021-00386-w.
  • Lei, W., Y. Liu, X. Si, J. Xu, W. Du, J. Yang, T. Zhou, and J. Lin. 2017. Synthesis and magnetic properties of octahedral Fe3O4 via a one-pot hydrothermal route. Physics Letters A 381 (4):314–8. doi:10.1016/j.physleta.2016.09.018.
  • Leus, K., K. Folens, N. R. Nicomel, J. P. H. Perez, M. Filippousi, M. Meledina, M. M. Dîrtu, S. Turner, G. V. Tendeloo, Y. Garcia, et al. 2018. Removal of arsenic and mercury species from water by covalent triazine framework encapsulated γ-Fe2O3 nanoparticles. Journal of Hazardous Materials 353:312–9. doi:10.1016/j.jhazmat.2018.04.027.
  • Li, X., G. M. Zeng, J. H. Huang, D. M. Zhang, L. J. Shi, S. B. He, and M. Ruan. 2011. Simultaneous removal of cadmium ions and phenol with MEUF using SDS and mixed surfactants. Desalination 276 (1-3):136–41. doi:10.1016/j.desal.2011.03.041.
  • Maia, L. F. O., M. S. Santos, T. G. Andrade, R. C. Hott, M. C. D. S. Faria, L. C. A. Oliveira, M. C. Pereira, and J. L. Rodrigues. 2020. Removal of mercury (II) from contaminated water by gold-functionalised Fe3O4 magnetic nanoparticles. Environmental Technology 41 (8):959–70. doi:10.1080/09593330.2018.1515989.
  • Manzar, M. S., G. Khan, P. V. D. S. Lins, M. Zubair, S. U. Khan, R. Selvasembian, L. Meili, N. I. Blaisi, M. Nawaz, H. A. Aziz, et al. 2021. RSM-CCD optimization approach for the adsorptive removal of eriochrome black T from aqueous system using steel slag-based adsorbent: Characterization, isotherm, kinetic modeling and thermodynamic analysis. Journal of Molecular Liquids 339:116714. doi:10.1016/j.molliq.2021.116714.
  • Mehdinia, A., M. Akbari, T. B. Kayyal, and M. Azad. 2015. High-efficient mercury removal from environmental water samples using di-thio grafted on magnetic mesoporous silica nanoparticles. Environmental Science and Pollution Research İnternational 22 (3):2155–65. doi:10.1007/s11356-014-3430-6.
  • Mohammad, Y. S., E. M. Shaibu-Imodagbe, S. B. Igboro, A. Giwa, and C. A. Okuofu. 2014. Modeling and optimization for production of rice husk activated carbon and adsorption of phenol.  Journal of Engineering 2014: 278075. doi:10.1155/2014/278075.
  • Mohammadnia, E., M. Hadavifar, and H. Veisi. 2019. Kinetics and thermodynamics of mercury adsorption onto thiolated graphene oxide nanoparticles. Polyhedron 173:114139. doi:10.1016/j.poly.2019.114139.
  • Mourabet, M., A. E. Rhilassi, H. E. Boujaady, M. Bennani-Ziatni, and A. Taitai. 2017. Use of response surface methodology for optimization of fluoride adsorption in an aqueous solution by brushite. Arabian Journal of Chemistry 10:S3292–S3302. doi:10.1016/j.arabjc.2013.12.028.
  • Naushad, M., T. Ahamad, and K. M. Al-Sheetan. 2021. Development of a polymeric nanocomposite as a high performance adsorbent for Pb (II) removal from water medium: Equilibrium, kinetic and antimicrobial activity. Journal of Hazardous Materials 407:124816. doi:10.1016/j.jhazmat.2020.124816.
  • Owolabi, R. U., M. A. Usman, and A. J. Kehinde. 2018. Modelling and optimization of process variables for the solution polymerization of styrene using response surface methodology. Journal of King Saud University - Engineering Sciences 30 (1):22–30. doi:10.1016/j.jksues.2015.12.005.
  • Pang, Y., G. Zeng, L. Tang, Y. Zhang, Y. Liu, X. Lei, Z. Li, J. Zhang, and G. Xie. 2011. PEI-grafted magnetic porous powder for highly effective adsorption of heavy metal ions. Desalination 281:278–84. doi:10.1016/j.desal.2011.08.001.
  • Pasinszki, T., M. Krebsz, D. Chand, L. Kotai, Z. Homonnay, I. E. Sajó, and T. Vaczi. 2020. Carbon microspheres decorated with iron sulfide nanoparticles for mercury (II) removal from water. Journal of Materials Science 55 (4):1425–35. doi:10.1007/s10853-019-04032-3.
  • Patiño-Ruiz, D., H. Bonfante, G. D. Ávila, and A. Herrera. 2019. Adsorption kinetics, isotherms and desorption studies of mercury from aqueous solution at different temperatures on magnetic sodium alginate-thiourea microbeads. Environmental Nanotechnology, Monitoring & Management 12:100243. doi:10.1016/j.enmm.2019.100243.
  • Piri, M., E. Sepehr, A. Samadi, K. Farhadi, and M. Alizadeh. 2021. Application of diatomite for sorption of Pb, Cu, Cd and Zn from aqueous solutions: Kinetic, thermodynamic studies and application of response surface methodology (RSM). Water Environment Research : A Research Publication of the Water Environment Federation 93 (5):714–26. doi:10.1002/wer.1377.
  • Priyadarshanee, M., and S. Das. 2021. Biosorption and removal of toxic heavy metals by metal tolerating bacteria for bioremediation of metal contamination: A comprehensive review. Journal of Environmental Chemical Engineering 9 (1):104686. doi:10.1016/j.jece.2020.104686.
  • Rabie, A. M., H. M. Abd El-Salam, M. A. Betiha, H. H. El-Maghrabi, and D. Aman. 2019. Mercury removal from aqueous solution via functionalized mesoporous silica nanoparticles with the amine compound. Egyptian Journal of Petroleum 28 (3):289–96. doi:10.1016/j.ejpe.2019.07.003.
  • Rae, I. B., S. W. Gibb, and S. Lu. 2009. Biosorption of Hg from aqueous solutions by crab carapace. Journal of Hazardous Materials 164 (2-3):1601–4. doi:10.1016/j.jhazmat.2008.09.052.
  • Rahmani, H., A. Rahmani, S. Rahmani, R. Farokhnejad, M. Yousefi, and K. Rahmani. 2022. Synthesis and characterization of alginate superparamagnetic nanoparticles deposited on Fe3O4 and investigation its application in adsorption of tetracycline in aqueous solutions. Polymer Bulletin 79 (6):4197–217. doi:10.1007/s00289-021-03701-1.
  • Salehi, E., P. Daraei, and A. Arabi Shamsabadi. 2016. A review on chitosan-based adsorptive membranes. Carbohydrate Polymers 152:419–32. doi:10.1016/j.carbpol.2016.07.033.
  • Sarode, S., P. Upadhyay, M. A. Khosa, T. Mak, A. Shakir, S. Song, and A. Ullah. 2019. Overview of wastewater treatment methods with special focus on biopolymer chitin-chitosan. International Journal of Biological Macromolecules 121:1086–100. doi:10.1016/j.ijbiomac.2018.10.089.
  • Shi, M. T., X. A. Yang, and W. B. Zhang. 2019. Magnetic graphitic carbon nitride nano-composite for ultrasound-assisted dispersive micro-solid-phase extraction of Hg (II) prior to quantitation by atomic fluorescence spectroscopy. Analytica Chimica Acta 1074:33–42. doi:10.1016/j.aca.2019.04.062.
  • Song, Y., M. Lu, B. Huang, D. Wang, G. Wang, and L. Zhou. 2018. Decoration of defective MOS2 nanosheets with Fe3O4 nanoparticles as superior magnetic adsorbent for highly selective and efficient mercury ions (Hg2+) removal. Journal of Alloys and Compounds 737:113–21. doi:10.1016/j.jallcom.2017.12.087.
  • Tüzün, I., G. Bayramoğlu, E. Yalçin, G. Başaran, G. Celik, and M. Y. Arica. 2005. Equilibrium and kinetic studies on biosorption of Hg (II), Cd (II) and Pb (II) ions onto microalgae Chlamydomonas reinhardtii. Journal of Environmental Management 77 (2):85–92. doi:10.1016/j.jenvman.2005.01.028.
  • Ubando, A. T., A. D. M. Africa, M. C. Maniquiz-Redillas, A. B. Culaba, W. H. Chen, and J. S. Chang. 2021. Microalgal biosorption of heavy metals: A comprehensive bibliometric review. Journal of Hazardous Materials 402:123431. doi:10.1016/j.jhazmat.2020.123431.
  • Vijayaraghavan, K., and Y. S. Yun. 2008. Bacterial biosorbents and biosorption. Biotechnology Advances 26 (3):266–91. doi:10.1016/j.biotechadv.2008.02.002.
  • Wan, K., G. Wang, S. Xue, Y. Xiao, J. Fan, L. Li, and Z. Miao. 2021. Preparation of humic acid/l-cysteine-codecorated magnetic Fe3O4 nanoparticles for selective and highly efficient adsorption of mercury. ACS Omega.6 (11):7941–50. doi:10.1021/acsomega.1c00583.
  • Xu, P. X., G. M. Zeng, D. L. Huang, C. L. Feng, S. Hu, M. H. Zhao, C. Lai, Z. Wei, C. Huang, G. X. Xie, et al. 2012. Use of iron oxide nanomaterials in wastewater treatment: A review. The Science of the Total Environment 424:1–10. doi:10.1016/j.scitotenv.2012.02.023.
  • Yusuff, A. S. 2018. Optimization of adsorption of Cr (VI) from aqueous solution by Leucaena leucocephala seed shell activated carbon using design of experiment. Applied Water Science 8 (8):232. doi:10.1007/s13201-018-0850-3.
  • Zhang, L., J. Zhang, X. Li, C. Wang, A. Yu, S. Zhang, G. Ouyang, and Y. Cui. 2021. Adsorption behavior and mechanism of Hg (II) on a porous core-shell copper hydroxy sulfate@MOF composite. Applied Surface Science 538:148054. doi:10.1016/j.apsusc.2020.148054.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.