190
Views
3
CrossRef citations to date
0
Altmetric
Liquid Chromatography

Separation and Preconcentration of Atrazine on Magnetic Multiwalled Carbon Nanotubes before Determination in Food and Water Samples by High-Performance Liquid Chromatography with Diode Array Detection (HPLC-DAD)

, &
Pages 2738-2748 | Received 09 Jan 2023, Accepted 18 Feb 2023, Published online: 24 Feb 2023

References

  • Amini, S., M. Amiri, H. Ebrahimzadeh, S. Seidi, and S. Hejabri Kandeh. 2021. Synthesis of magnetic Cu/CuFe2O4@MIL-88A(Fe) nanocomposite and application to dispersive solid-phase extraction of chlorpyrifos and phosalone in water and food samples. Journal of Food Composition and Analysis 104:104128. doi:10.1016/j.jfca.2021.104128.
  • Behbahani, M. 2020. Development of a new and fast extraction method based on solvent-assisted dispersive solid-phase extraction for preconcentration and trace detection of atrazine in real matrices. Journal of AOAC International 103 (1):227–34. doi:10.5740/jaoacint.19-0119.
  • Cao, W., B. Yang, F. Qi, L. Qian, J. Li, L. Lu, and Q. Xu. 2017. Simple and sensitive determination of atrazine and its toxic metabolites in environmental water by carboxyl modified polyacrylonitrile nanofibers mat-based solid-phase extraction coupled with liquid chromatography-diode array detection. Journal of Chromatography A 1491:16–26. doi:10.1016/j.chroma.2017.02.035.
  • Chen, J., W. Zhao, L. Tan, J. Wang, H. Li, and J. Wang. 2019. Separation and detection of trace atrazine from seawater using dummy-template molecularly imprinted solid-phase extraction followed by high-performance liquid chromatography. Marine Pollution Bulletin 149:110502. doi:10.1016/j.marpolbul.2019.110502.
  • Ding, Y., B. Hao, N. Zhang, H. Lv, B. Zhao, and Y. Tian. 2023. Rapid determination of thiram and atrazine pesticide residues in fruit and aqueous system based on surface-enhanced Raman scattering. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 285:121873. doi:10.1016/j.saa.2022.121873.
  • dos Santos Morales, P., P. M. dos Santos, A. E. de Carvalho, and M. Zanetti Corazza. 2022. Vortex-assisted magnetic solid-phase extraction of cadmium in food, medicinal herb, and water samples using silica-coated thiol-functionalized magnetic multiwalled carbon nanotubes as adsorbent. Food Chemistry 368:130823. doi:10.1016/j.foodchem.2021.130823.
  • Duman, S., Z. Erbas, and M. Soylak. 2020. Ultrasound-assisted magnetic solid phase microextraction of patent blue V on magnetic multiwalled carbon nanotubes prior to its spectrophotometric determination. Microchemical Journal 159:105468. doi:10.1016/j.microc.2020.105468.
  • Filik, H., K. I. Berker, N. Balkis, and R. Apak. 2004. Simultaneous preconcentration of vanadium(V/IV) species with palmitoyl quinolin-8-ol bonded to amberlite XAD 2 and their separate spectrophotometric determination with 4-(2-pyridylazo)-resorcinol using CDTA as masking agent. Analytica Chimica Acta 518 (1–2):173–9. doi:10.1016/j.aca.2004.05.012.
  • Gabardo, R. P., N. P. Toyama, B. do Amaral, M. Boroski, A. T. Toci, S. F. Benassi, P. G. Peralta-Zamora, G. A. Cordeiro, and M. V. de Liz. 2021. Determination of atrazine and main metabolites in natural waters based on a simple method of QuEChERS and liquid chromatography coupled to a diode-array detector. Microchemical Journal 168:106392. doi:10.1016/j.microc.2021.106392.
  • Guan, S. H., M. W. Huang, X. Li, and Q. Cai. 2018. Determination of atrazine, simazine, alachlor, and metolachlor in surface water using dispersive pipette extraction and gas chromatography–mass spectrometry. Analytical Letters 51 (4):613–25. doi:10.1080/00032719.2017.1341904.
  • Gupta, V. K., S. Agarwal, and T. A. Saleh. 2011. Synthesis and characterization of alumina-coated carbon nanotubes and their application for lead removal. Journal of Hazardous Materials 185 (1):17–23. doi:10.1016/j.jhazmat.2010.08.053.
  • Hassan, M., F. Uzcan, S. N. Shah, U. Alshana, and M. Soylak. 2021. Switchable-hydrophilicity solvent liquid-liquid microextraction for sample cleanup prior to dispersive magnetic solid-phase microextraction for spectrophotometric determination of quercetin in food samples. Sustainable Chemistry and Pharmacy 22:100480. doi:10.1016/j.scp.2021.100480.
  • Karlidağ, N. E., M. Toprak, R. Demirel, B. T. Zaman, and S. Bakirdere. 2022. Development of copper nanoflowers based dispersive solid-phase extraction method for cadmium determination in Shalgam juice samples using slotted quartz tube atomic absorption spectrometry. Food Chemistry 396:133669. doi:10.1016/j.foodchem.2022.133669.
  • Katsumata, H., T. Kawanishi, M. Furukawa, I. Tateishi, and S. Kaneco. 2022. Mixed hemimicelles solid phase extraction of atrazine and simazine from environmental water samples using alumina-coated magnetite composite material. Journal of Analytical Chemistry 77 (5):581–7. doi:10.1134/S1061934822050045.
  • Khan, M., E. Yilmaz, and M. Soylak. 2016. Vortex assisted magnetic solid phase extraction of lead(ii) and cobalt(ii) on silica coated magnetic multiwalled carbon nanotubes impregnated with 1-(2-pyridylazo)-2-naphthol. Journal of Molecular Liquids 224:639–47. doi:10.1016/j.molliq.2016.10.023.
  • Khodadadi, S., E. Konoz, A. Niazi, and A. Ezabadi. 2022. Preconcentration of heavy metal ions on magnetic multi-walled carbon nanotubes using magnetic solid-phase extraction and determination in vegetable samples by electrothermal atomic absorption spectrometry: Box–Behnken design. Chemical Papers 76 (11):6735–51. doi:10.1007/s11696-022-02330-w.
  • Letseka, T., and M. J. George. 2017. Hollow-fibre-supported dispersive liquid-liquid microextraction for determination of atrazine and triclosan in aqueous samples. International Journal of Analytical Chemistry 2017:1451476. doi:10.1155/2017/1451476.
  • Marzi, K., Elnaz, M. R. A. Mogaddam, M. A. Farajzadeh, and M. Nemati. 2022. Magnetic silicon carbide nanocomposite as a sorbent in magnetic dispersive solid phase extraction followed by dispersive liquid–liquid microextraction in the gas chromatographic determination of pesticides. Microchemical Journal 181:107786. doi:10.1016/j.microc.2022.107786.
  • Memon, S. S., M. Waris, A. R. Sidhu, and M. Zaqa. 2022. Atrazine voltammetric determination in the pesticide industries wastewater by gold nanoparticles at a modified glassy carbon electrode. Portugaliae Electrochimica Acta 40 (5):363–72. doi:10.4152/pea.2022400504.
  • Mendil, D., O. D. Uluozlu, M. Tuzen, and M. Soylak. 2019. Multi-element determination in some foods and beverages using silica gel modified with 1-phenylthiosemicarbazide. Food Additives & Contaminants: Part A 36 (11):1667–76. doi:10.1080/19440049.2019.1662954.
  • Mohammadi, F., A. Esrafili, M. Kermani, M. Farzadkia, M. Gholami, and M. Behbahani. 2019. Application of amino modified mesostructured cellular foam as an efficient mesoporous sorbent for dispersive solid-phase extraction of atrazine from environmental water samples. Microchemical Journal 146:753–62. doi:10.1016/j.microc.2019.01.049.
  • Mohd, N. I., M. Raoov, S. Mohamad, and N. N. Zain. 2018. Performance evaluation of non-ionic silicone surfactants OFX 0309 and DC 193C as a new approach in cloud point extraction-spectrophotometry for determination of atrazine in water samples. RSC Advances 8 (24):13556–66. doi:10.1039/c8ra00868j.
  • Morales-Benítez, I., P. Montoro-Leal, J. C. García-Mesa, M. M. López Guerrero, and E. Vereda Alonso. 2023. New magnetic chelating sorbent for chromium speciation by magnetic solid phase extraction on-line with inductively coupled plasma optical emission spectrometry. Talanta 256:124262.
  • Ozdemir, S., Z. Turkan, E. Kilinc, R. Bayat, M. Soylak, and F. Sen. 2022. Preconcentrations of Cu (II) and Mn (II) by magnetic solid-phase extraction on Bacillus cereus loaded γ-Fe2O3 nanomaterials. Environmental Research 209:112766. doi:10.1016/j.envres.2022.112766.
  • Owagboriaye, F., R. Oladunjoye, S. Aina, O. Adekunle, T. Salisu, A. Adenekan, O. Abesin, J. Oguntubo, O. Fafioye, G. Dedeke, et al. 2022. Outcome of the first survey of atrazine in drinking water from Ijebu-North, South-West, Nigeria: Human health risk and neurotoxicological implications. Toxicology Reports 9:1347–1356, doi:10.1016/j.toxrep.2022.06.012.
  • Öztürk Er, E., A. Çağlak, G. Önkal Engin, and S. Bakirdere. 2019. Ultrasound-assisted dispersive solid phase extraction based on Fe3O4/reduced graphene oxide nanocomposites for the determination of 4-tert octylphenol and atrazine by gas chromatography–mass spectrometry. Microchemical Journal 146:423–8. doi:10.1016/j.microc.2019.01.040.
  • Pecev-Marinković, E., A. Miletić, S. Tošić, A. Pavlović, D. Kostic, I. R. Mišić, and V. Dekić. 2019. Optimization and validation of the kinetic spectrophotometric method for quantitative determination of the pesticide atrazine and its application in infant formulae and cereal-based baby food. Journal of the Science of Food and Agriculture 99 (12):5424–31. doi:10.1002/jsfa.9803.
  • Prukjareonchook, A., W. Alahmad, C. Kulsing, T. Chaisuwan, and L. Dubas. 2022. Selective solid-phase extraction of atrazine from agricultural environmental water samples using high permeability nanoporous carbon derived from melamine-based polybenzoxazine followed by HPLC-UV. International Journal of Environmental Analytical Chemistry. doi:10.1080/03067319.2022.2056035.
  • Qiu, Y. Y., and W. H. Ding. 2022. Mechanochemically synthesized zeolitic imidazolate framework-8 as sorbent for dispersive solid-phase extraction of benzophenone-type ultraviolet filters in aqueous samples. Journal of Chromatography A 1681:463443. doi:10.1016/j.chroma.2022.463443.
  • Rodríguez-Robledo, V., A. Vendrell, A. García-Cifuentes, N. Villaseca-González, C. Guiberteau-Cabanillas, L. L. Martínez, J. J. Garde, and M. R. Fernández-Santos. 2022. Determination of atrazine and propazine metabolites deemed endocrine disruptors in human seminal plasma by LC–ESI-MS/MS. Chemical and Biological Technologies in Agriculture 9 (1):1–13. doi:10.1186/s40538-022-00285-4.
  • Santos-Hernández, A. S., L. Hinojosa-Reyes, I. D. C. Sáenz-Tavera, A. Hernández-Ramírez, and J. L. Guzmán-Mar. 2018. Atrazine and 2, 4-D determination in corn samples using microwave assisted extraction and on-line solid-phase extraction coupled to liquid chromatography. Journal of the Mexican Chemical Society 62 (2):282–94. doi:10.29356/jmcs.v62i2.475.
  • Seidi, S., and L. Alavi. 2019. Novel and rapid deep eutectic solvent (des) homogeneous liquid–liquid microextraction (hllme) with flame atomic absorption spectrometry (faas) detection for the determination of copper in vegetables. Analytical Letters 52 (13):2092–106. doi:10.1080/00032719.2019.1598425.
  • Shah, S. N., F. Uzcan, and M. Soylak. 2022. Ultrasound-assisted deep eutectic solvent microextraction procedure for traces ponceau 4R in water and cosmetic samples. International Journal of Environmental Science and Technology 19 (1):189–96. doi:10.1007/s13762-021-03154-z.
  • Soylak, M., L. Elci, and M. Dogan. 1996. Determination of some trace metal impurities in refined and unrefined salts after preconcentration onto activated carbon. Fresenius Environmental Bulletin 5:148–55.
  • Soylak, M., and L. Elci. 2000. Solid phase extraction of trace metal ions in drinking water samples from Kayseri-Turkey. Journal of Trace and Microprobe Techniques 18:397–403.
  • Soylak, M., and I. Narin. 2005. An on-line preconcentration system for cadmium determination in environmental samples by flame atomic absorption spectrometry. Chemia Analityczna (Warsaw) 50:705–15.
  • Soylak, M., Y. E. Unsal, and M. Tuzen. 2011. Spectrophotometric determination of trace levels of allura red in water samples after separation and preconcentration. Food and Chemical Toxicology 49 (5):1183–7. doi:10.1016/j.fct.2011.02.013.
  • Soylak, M., A. O. Sevicin, and F. Uzcan. 2023. Preconcentration of nickel by magnetic solid-phase extraction (mspe) as the 2-(5-bromo-2-pyridylazo)-5-diethylamino-phenol (padap) chelate upon multiwalled carbon nanotubes (mwcnts) with determination by flame atomic absorption spectrometry (FAAS). Analytical Letters 56 (3):449–63. doi:10.1080/00032719.2022.2046770.
  • Sreedhashyam, H., V. Mehtab, S. Chenna, and V. V. R. Upadhyayula. 2022. Simultaneous determination of phthalates and bisphenols from plastic bottled water samples by dispersive solid-phase extraction with multiwalled carbon nanotubes and liquid chromatography/atmospheric pressure photoionization/high-resolution mass spectrometry. Rapid Communications in Mass Spectrometry: RCM 36 (23):e9394. doi:10.1002/rcm.9394.
  • Tian, H., X. Bai, and J. Xu. 2017. Simultaneous determination of simazine, cyanazine, and atrazine in honey samples by dispersive liquid–liquid microextraction combined with high-performance liquid chromatography. Journal of Separation Science 40 (19):3882–8. doi:10.1002/jssc.201700498.
  • Tuzen, M., K. Parlar, and M. Soylak. 2005. Enrichment/Separation of cadmium(ii) and lead(ii) in environmental samples by solid phase extraction. Journal of Hazardous Materials 121 (1–3):79–87.
  • Tuzen, M., O. D. Uluozlu, I. Karaman, and M. Soylak. 2009. Mercury(II) and methyl mercury speciation on streptococcus pyogenes loaded Dowex Optipore SD-2. Journal of Hazardous Materials 169 (1–3):345–50.
  • Wang, Q., T. Wang, Y. Zhang, J. Ma, and Y. Tuo. 2022. Preparation and evaluation of a chitosan modified biochar as an efficient adsorbent for pipette tip-solid phase extraction of triazine herbicides from rice. Food Chemistry 396:133716. doi:10.1016/j.foodchem.2022.133716.
  • Wu, X., S. Shen, H. Yan, Y. Yuan, and X. Chen. 2021. Efficient enrichment and analysis of atrazine and its degradation products in Chinese yam using accelerated solvent extraction and pipette tip solid-phase extraction followed by UPLC–DAD. Food Chemistry 337:127752. doi:10.1016/j.foodchem.2020.127752.
  • Zhang, T., Z. Qu, B. Li, and Z. Yang. 2019. Simultaneous determination of atrazine, pendimethalin, and trifluralin in fish samples by QuEChERS extraction coupled with gas chromatography-electron capture detection. Food Analytical Methods 12 (5):1179–86. doi:10.1007/s12161-019-01449-z.
  • Zhu, A., T. Jiao, S. Ali, Y. Xu, Q. Ouyang, and Q. Chen. 2022. Dispersive micro solid phase extraction based ionic liquid functionalized ZnO nanoflowers couple with chromatographic methods for rapid determination of aflatoxins in wheat and peanut samples. Food Chemistry 391:133277. doi:10.1016/j.foodchem.2022.133277.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.