203
Views
1
CrossRef citations to date
0
Altmetric
Clinical Analysis

Electrochemical Determination of Vitamin B12 (Cyanocobalamin) using Mercury Nanodroplets Supported at Montmorillonite on a Carbon Paste Electrode (CPE)

, , , , &
Pages 2882-2897 | Received 26 Sep 2022, Accepted 02 Mar 2023, Published online: 22 Mar 2023

References

  • Abiman, P., G. G. Wildgoose, L. Xiao, and R. G. Compton. 2008. The convenient determination of palladium at a solid electrode via adsorptive stripping voltammetry at a glassy carbon electrode modified with a random array of mercury nanodroplets. Electroanalysis 20:1607–9. doi:10.1002/elan.200804244.
  • Abollino, O., A. Giacomino, M. Malandrino, and E. Mentasti. 2008. Interaction of metal ions with Montmorillonite and Vermiculite. Applied Clay Science 38:227–36. doi:10.1016/j.clay.2007.04.002.
  • Abu-Zuhri, A. Z. 1991. Electrochemical behavior and simultaneous determination of copper(lI) and cobalt(lI) at a dropping mercury electrode in the presence of phenyl-2-picolylketone-2-pyridylhydrazone. Microchemical Journal 43:253–7. doi:10.1016/S0026-265X(10)80013-X.
  • Akbay, N., and E. Gök. 2008. Determination of vitamin B12 using a chemiluminescence flow system. Journal of Analytical Chemistry 63:1073–7. doi:10.1134/S1061934808110105.
  • Amon, B., G. Çinar, M. Anderl, F. Dragoni, M. Kleinberger-Pierer, and S. Hörtenhuber. 2021. Inventory reporting of livestock emissions: The impact of the IPCC 1996 and 2006 Guidelines. Environmental Research Letters 16:075001. doi:10.1088/1748-9326/ac0848.
  • Angeles, L. F., R. A. Mullen, I. J. Huang, C. Wilson, W. Khunjar, H. I. Sirotkin, A. E. McElroy, and D. S. Aga. 2020. Assessing pharmaceutical removal and reduction in toxicity provided by advanced wastewater treatment systems. Environmental Science: Water Research & Technology 6:62–77. doi:10.1039/C9EW00559E.
  • Ashrafi, N., and B. Hajalilou. 2017. Geochemistry of the paleocene sediments from SW Ahar: Implications for provenance, tectonics and source rock weathering. Iranian Journal of Earth Sciences 9:48–63.
  • Bard, A. J., and L. R. Faulkner. 2000. Electrochemical methods: Fundamentals and applications. 2nd ed., 580–632. New York: Wiley.
  • Barón-Jaimez, J., M. R. Joya, and J. Barba-Ortega. 2013. Anodic stripping voltammetry – ASV for determination of heavy metals. Journal of Physics: Conference Series 466:012023. doi:10.1088/1742-6596/466/1/012023.
  • Casey, P. J., K. R. Speckman, F. J. Ebert, and W. E. Hobbs. 1982. Radioisotope dilution technique for determination of vitamin B12 in foods. Journal of the Association of Official Analytical Chemists 65:85–8. doi:10.1093/jaoac/65.1.85.
  • Chen, X., F. Ren, J. Xu, Z. Yu, X. Lin, Z. Bai, and F. Gong. 2020. A Rapid Quantitative chemiluminescence immunoassay for vitamin B12 in human serum. Clinical Laboratory 66:32162880. doi:10.7754/Clin.Lab.2019.190604.
  • Cowan, A. E., S. Jun, J. J. Gahche, J. A. Tooze, J. T. Dwyer, H. A. Eicher-Miller, A. Bhadra, P. M. Guenther, N. Potischman, K. W. Dodd, et al. 2018. Dietary supplement use differs by socioeconomic and health-related characteristics among U.S. adults, NHANES 2011–2014. Nutrients 10:1114. doi:10.3390/nu10081114.
  • Cowan, A. E., S. Jun, J. A. Tooze, K. W. Dodd, J. J. Gahche, H. A. Eicher-Miller, P. M. Guenther, J. T. Dwyer, A. J. Moshfegh, D. G. Rhodes, et al. 2020. Comparison of 4 methods to assess the prevalence of use and estimates of nutrient intakes from dietary supplements among US adults. The Journal of Nutrition 150 (4):884–93. doi:10.1093/jn/nxz306.
  • de Barros, A., C. J. L. Constantino, N. C. da Cruz, J. R. R. Bortoleto, and M. Ferreira. 2017. High performance of electrochemical sensors based on LbL films of gold nanoparticles, polyaniline and sodium montmorillonite clay mineral for simultaneous detection of metal ions. Electrochimica Acta 235:700–8. doi:10.1016/j.electacta.2017.03.135.
  • Dehdashtian, S., M. Behbahani, and A. Noghrehabadi. 2017. Fabrication of a novel, sensitive and selective electrochemical sensor for antibiotic cefotaxime based on sodium montmorillonite nonoclay/electroreduced graphene oxide composite modified carbon paste electrode. Journal of Electroanalytical Chemistry 801:450–8. doi:10.1016/j.jelechem.2017.08.033.
  • Dongmo, L. M., L. S. Guenang, S. L. Z. Jiokeng, A. T. Kamdem, G. Doungmo, B. C. Victor, M. Jović, A. Lesch, I. K. Tonlé, and H. Girault. 2021. A new sensor based on an amino-montmorillonite-modified inkjet-printed graphene electrode for the voltammetric determination of gentisic acid. Mikrochimica Acta 188 (2):36. doi:10.1007/s00604-020-04651-7.
  • dos Anjos, V. E., J. R. Rohwedder, S. Cadore, G. Abate, and M. T. Grassi. 2014. Montmorillonite and vermiculite as solid phases for the preconcentration of trace elements in natural waters: Adsorption and desorption studies of As, Ba, Cu, Cd, Co, Cr, Mn, Ni, Pb, Sr, V, and Zn. Applied Clay Science 99:289–96. doi:10.1016/j.clay.2014.07.013.
  • dos Santos, V. C. G., M. T. Grassi, and G. Abate. 2015. Sorption of Hg(II) by modified K10 montmorillonite: Influence of pH, ionic strength and the treatment with different cations. Geoderma 237-238:129–36. doi:10.1016/j.geoderma.2014.08.018.
  • Economou, A., and P. R. Fielden. 1998. Selective determination of Ni(II) and Co(II) by flow injection analysis and adsorptive cathodic stripping voltammetry on a wall jet mercury film electrode. Talanta 46 (5):1137–46. doi:10.1016/s0039-9140(97)00381-0.
  • Elfiky, M., and N. Salahuddin. 2021. Advanced sensing platform for nanomolar detection of food preservative nitrite in sugar byproducts based on 3D mesoporous nanorods of montmorillonite/TiO2–ZnO hybrids. Microchemical Journal 170:106582. doi:10.1016/j.microc.2021.106582.
  • Elfiky, M., N. Salahuddin, and A. Matsuda. 2020. Green fabrication of 3D hierarchical blossom-like hybrid of peeled montmorillonite-ZnO for in-vitro electrochemical sensing of diltiazem hydrochloride drug. Materials Science & Engineering. C, Materials for Biological Applications 111:110773. doi:10.1016/j.msec.2020.110773.
  • Farghaly, O. A. 2003. Direct and simultaneous voltammetric analysis of heavy metal in tap water samples at Assiut city: An approach to improve the analysis time for nickel and cobalt determination at mercury film electrode. Microchemical Journal 75:119–31. doi:10.1016/S0026-265X(03)00090-0.
  • Froese, D. S., B. Fowler, and M. R. Baumgartner. 2019. Vitamin B12, folate, and the methionine remethylation cycle—biochemistry, pathways, and regulation. Journal of Inherited Metabolic Disease 42 (4):673–85. doi:10.1002/jimd.12009.
  • Guo, D., J. Li, J. Yuan, W. Zhou, and E. Wang. 2010. Nafion film immobilized nano Ag-Hg amalgam glassy carbon electrode used for simultaneous determination of lead, cadmium and copper. Electroanalysis 22:69–73. doi:10.1002/elan.200900259.
  • Han, L., Y. Zhang, J. Kang, J. Tang, and Y. Zhang. 2011. Determination Co2+ in vitamin B12 based on enhancement of 2-(4-substituted-phenyl)-4,5-di(2-furyl) imidazole and H2O2 chemiluminescence reaction. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 82 (1):146–52. doi:10.1016/j.saa.2011.07.025.
  • Jayaratna, H. G., C. S. Bruntlett, and P. T. Kissinger. 1996. Mercury thread electrode in a flow cell. Analytica Chimica Acta 332:165–71. doi:10.1016/0003-2670(96)00229-2.
  • Kamruzzaman, M., A.-M. Alam, K. M. Kim, S. H. Lee, Y. H. Kim, A. Kabir, G.-M. Kim, and T. D. Dang. 2013. Chemiluminescence microfluidic system of gold nanoparticles enhanced luminol-silver nitrate for the determination of vitamin B12. Biomedical Microdevices 15 (1):195–202. doi:10.1007/s10544-012-9716-x.
  • Kapturski, P., and A. Bobrowski. 2008. The silver amalgam film electrode in catalytic adsorptive stripping voltammetric determination of cobalt and nickel. Journal of Electroanalytical Chemistry 617:1–6. doi:10.1016/j.jelechem.2008.01.007.
  • Katsura, H., K. Koseki, T. Bito, S. Takenaka, and F. Watanabe. 2021. Characterization of vitamin B12 compounds in fermented poultry manure fertilizers. Agriculture 11:627. doi:10.3390/agriculture11070627.
  • Kelleher, B. P., and S. D. Broin. 1991. Microbiological assay for vitamin B12 performed in 96-well microtitre plates. Journal of Clinical Pathology 44 (7):592–5. doi:10.1136/jcp.44.7.592.
  • Kokulnathan, T., T.-J. Wang, M. Thangapandian, and S. O. Alaswad. 2020. Synthesis and characterization of hexagonal boron nitride/halloysite nanotubes nanocomposite for electrochemical detection of furazolidone. Applied Clay Science 187:105483. doi:10.1016/j.clay.2020.105483.
  • Kong, D., L. Liu, S. Song, H. Kuang, and C. Xu. 2017. Development of sensitive, rapid, and effective immunoassays for the detection of vitamin B12 in fortified food and nutritional supplements. Food Analytical Methods 10:10–8. doi:10.1007/s12161-016-0543-1.
  • Kreft, G. L., O. C. Braga, and A. Spinelli. 2012. Analytical electrochemistry of vitamin B12 on a bismuth-film electrode surface. Electrochimica Acta 83:125–32. doi:10.1016/j.electacta.2012.07.132.
  • Krishnan, R. G., S. Greeshma, D. S. Morris, S. S. Rameshan, and S. Beena. 2019. Morphological studies of disposable graphite and its effective utilization for vitamin B12 analysis in pharmaceutical formulations. Materials Today 18 (7):3314–20. doi:10.1016/j.matpr.2019.07.252.
  • Kronberg, S. L., J. Ryschawy, and G. Lemaire. 2019. Chapter 5 – Negative impacts on the environment and people from simplification of crop and livestock production. In Agroecosystem Diversity, eds. P.C.D.F. Carvalho, S. Kronberg, and S. Recous, 75–90. Cambridge, MA: Academic Press.
  • Kumar, P. S., and P. R. Yaashikaa. 2019. Agriculture pollution. In Advanced treatment techniques for industrial wastewater, eds. H. Athar and A. Sirajuddin, 134–54. Hershey, PA: IGI Global.
  • Kunimura, S., Y. Tokuoka, and U. Aono. 2018. Trace determination of cyanocobalamin (vitamin B12) by analyzing cobalt using a portable total reflection X-ray fluorescence spectrometer. Analytical Sciences : The International Journal of the Japan Society for Analytical Chemistry 34 (12):1401–4. doi:10.2116/analsci.18P330.
  • MacPherson, A., and J. Dixon. 2003. Cobalt. In Encyclopedia of food sciences and nutrition, ed. B. Caballero, 2nd ed, 1431–6. Oxford: Academic Press.
  • Mbokana, J. G. Y., G. K. Dedzo, and E. Ngameni. 2020. Grafting of organophilic silane in the interlayer space of acid-treated smectite: Application to the direct electrochemical detection of glyphosate. Applied Clay Science 188:105513. doi:10.1016/j.clay.2020.105513.
  • McBride, M. 1994. Environmental chemistry of soils. New York: Oxford University Press.
  • Mohammadi, S., M. A. Taher, and H. Beitollahi. 2017. Mercury nanodroplets immobilized on the surface of a chitosan-modified carbon paste electrode as a new thallium sensor in aqueous samples. Journal of The Electrochemical Society 164:B476–B481. doi:10.1149/2.1581709jes.
  • Navrátilová, Z., and L. Vaculíková. 2006. Electrodeposition of mercury film on electrodes modified with clay minerals. Chemical Papers 60:348–52. doi:10.2478/s11696-006-0063-3.
  • Oliveira, P., A. C. Lamy-Mendes, J. L. Gogola, A. S. Mangrich, L. H. Marcolino-Junior, and M. F. Bergamini. 2015. Mercury nanodroplets supported at biochar for electrochemical determination of zinc ions using a carbon paste electrode. Electrochimica Acta 151:525–30. doi:10.1016/j.electacta.2014.11.057.
  • Osterdahl, B., and E. Johansson. 1988. Radioisotope dilution determination of vitamin B12 in dietary supplements. International Journal for Vitamin and Nutrition Research. Internationale Zeitschrift Fur Vitamin- Und Ernahrungsforschung. Journal International De Vitaminologie Et De Nutrition 58 (3):300–2.
  • Ovalle, M., E. Arroyo, M. Stoytcheva, R. Zlatev, L. Enriquez, and A. Olivas. 2015. An amperometric microbial biosensor for the determination of vitamin B12. Analytical Methods 7:8185–9. doi:10.1039/C5AY01599E.
  • Parvin, M. H., E. Azizi, J. Arjomandi, and J. Y. Lee. 2018. Highly sensitive and selective electrochemical sensor for detection of vitamin B12 using an Au/PPy/FMNPs@TD-modified electrode. Sensors and Actuators B: Chemical 261:335–44. doi:10.1016/j.snb.2018.01.168.
  • Pereira, D. F., E. R. Santana, J. V. Piovesan, and A. Spinelli. 2020. A novel electrochemical strategy for determination of vitamin B12 by Co(I/II) redox pair monitoring with boron-doped diamond electrode. Diamond and Related Materials 105:107793. doi:10.1016/j.diamond.2020.107793.
  • Pinto, A. C., C. H. Oliveira, and N. M. Ribeiro. 2008. The effect of microwave irradiation on the crystalline structure and catalytic activity of clays. Química Nova 31:562–8.
  • Pourreza, N., R. Mirzajani, and J. Burromandpiroze. 2017. Fluorescence detection of vitamin B12 in human plasma and urine samples using silver nanoparticles embedded in chitosan in micellar media. Analytical Methods 9:4052–9. doi:10.1039/C7AY01297G.
  • Reddaiah, K., T. M. Reddy, Y. S. Rao, P. Raghu, and P. Gopal. 2014. Development of electrochemical sensor based on β-cyclodextrin/K10 montmorillonite towards the enhanced electro-catalytic oxidation of isoorientin: A voltammetric study. Materials Science and Engineering: B 183:69–77. doi:10.1016/j.mseb.2014.01.005.
  • Refera, T., B. S. Chandravanshi, and H. Alemu. 1998. Differential pulse anodic stripping voltammetric determination of cobalt(II) with n-p-chlorophenylcinnamohydroxamic acid modified carbon paste electrode. Electroanalysis 10:1038–42. doi:10.1002/(SICI)1521-4109(199810)10:15<1038::AID-ELAN1038>3.0.CO;2-3.
  • Sengupta, P., and S. Dutta. 2018. Metals. In Encyclopedia of reproduction, ed. M. K. Skinner, 2nd ed., 579–87. Oxford: Academic Press.
  • Sirico, F., S. Miressi, C. Castaldo, R. Spera, S. Montagnani, F. Di Meglio, and D. Nurzynska. 2018. Habits and beliefs related to food supplements: Results of a survey among Italian students of different education fields and levels. PloS One 13 (1):e0191424. doi:10.1371/journal.pone.0191424.
  • Smith, R. M., and A. E. Martell. 1989. Critical stability constants: Second supplement. New York, NY: Springer.
  • Song, Z., and S. Hou. 2003. Sub-picogram determination of Vitamin B12 in pharmaceuticals and human serum using flow injection with chemiluminescence detection. Analytica Chimica Acta 488:71–9. doi:10.1016/S0003-2670(03)00665-2.
  • Su, P. G., and C. Y. Chen. 2008. Humidity sensing and electrical properties of Na- and K-montmorillonite. Sensors and Actuators B: Chemical 129:380–5. doi:10.1016/j.snb.2007.08.032.
  • Suguihiro, T. M., P. R. de Oliveira, E. I. P. de Rezende, A. S. Mangrich, L. H. Marcolino, and M. F. Bergamini. 2013. An electroanalytical approach for evaluation of biochar adsorption characteristics and its application for lead and cadmium determination. Bioresource Technology 143:40–5. doi:10.1016/j.biortech.2013.05.107.
  • Sunitha, Y., and S. Kumar. 2021. An assessment of vitamin B12 through determination of cobalt by X-ray fluorescence spectrometry. Radiation Physics and Chemistry 188:109583. doi:10.1016/j.radphyschem.2021.109583.
  • Tchoffo, R., G. B. P. Ngassa, G. Doungmo, A. T. Kamdem, I. K. Tonlé, and E. Ngameni. 2022. Surface functionalization of natural hydroxyapatite by polymerization of β-cyclodextrin: Application as electrode material for the electrochemical detection of Pb(II). Environmental Science and Pollution Research International 29 (1):222–35. doi:10.1007/s11356-021-15578-8.
  • Tongwane, M. I., and M. E. Moeletsi. 2018. A review of greenhouse gas emissions from the agriculture sector in Africa. Agricultural Systems 166:124–34. doi:10.1016/j.agsy.2018.08.011.
  • Wu, J., B. Li, J. Liao, Y. Feng, D. Zhang, J. Zhao, W. Wen, Y. Yang, and N. Liu. 2009. Behavior and analysis of Cesium adsorption on montmorillonite mineral. Journal of Environmental Radioactivity 100 (10):914–20. doi:10.1016/j.jenvrad.2009.06.024.
  • Yao, S., S. Yuan, J. Xu, Y. Wang, J. Luo, and S. Hu. 2006. A hydrogen peroxide sensor based on colloidal MnO2/Na-montmorillonite. Applied Clay Science 33:35–42. doi:10.1016/j.clay.2006.03.006.
  • Zhao, H., H. Ma, X. Li, B. Liu, R. Liu, and S. Komarneni. 2021. Nanocomposite of halloysite nanotubes/multi-walled carbon nanotubes for methyl parathion electrochemical sensor application. Applied Clay Science 200:105907. doi:10.1016/j.clay.2020.105907.
  • Zhao, Q., Y. Chai, R. Yuan, and J. Luo. 2013. Square wave anodic stripping voltammetry determination of lead based on the Hg(II) immobilized graphene oxide composite film as an enhanced sensing platform. Sensors and Actuators B: Chemical 178:379–84. doi:10.1016/j.snb.2012.12.114.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.