113
Views
0
CrossRef citations to date
0
Altmetric
Nanotechnology

Quantum-Chemical and Experimental Study on the Interactions between the Magnetic Core and the Molecular Shell of Cobalt Ferrite Nanoparticles in Aqueous Suspensions

, , , , &
Pages 503-516 | Received 15 Nov 2022, Accepted 07 Mar 2023, Published online: 22 Mar 2023

References

  • Aihara, J. 1999. Reduced HOMO − LUMO gap as an Index of kinetic stability for polycyclic aromatic hydrocarbons. The Journal of Physical Chemistry A 103 (37):7487–95. doi:10.1021/jp990092i.
  • Andries, M., E. Puscasu, C. Nadejde, L. Oprica, and D. Creanga. 2014. Cobalt ferrite nanoparticles effect on cellulolytic fungus Phanerochaete chrysosporium. Romanian Journal of Biopysics 224 (2):101–7.
  • Ansari, L., and B. Malaekeh-Nikouei. 2017. Magnetic silica nanocomposites for magnetic hyperthermia applications. International Journal of Hyperthermia: The Official Journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group 33 (3):354–63. doi:10.1080/02656736.2016.1243736.
  • Avasthi, A., C. Caro, E. Pozo-Torres, M. P. Leal, and M. L. García-Martín. 2020. Magnetic nanoparticles as MRI contrast agents. 378(3):40Erratum in: 2021.Topics in Current Chemistry (Cham) 379 (4):30. doi:10.1007/s41061-021-00340-y.
  • Balasoiu-Gaina, A.-M., M. Balasoiu, O. Ivankov, D. Soloviov, S. Lysenko, C. Stan, N. Lupu, D. Creanga, and A. Kuklin. 2017. Structural analysis of aqueous ferrofluids with cobalt ferrite particles stabilized with lauric acid and sodium n dodecyl sulphate. Journal of Physics: Conference Series 848 (1):012026. doi:10.1088/1742-6596/848/1/012026.
  • Bisla, A., N. Srivastava, R. Rautela, V. Yadav, P. Singh, A. Kumar, S. K. Ghosh, S. Ghosh, and R. Katiyar. 2020. Effect of ultra-sonication and peptization on the aqueous phase stability of iron oxide nanoparticles. Inorganic and Nano-Metal Chemistry 50 (11):1103–14. doi:10.1080/24701556.2020.1735426.
  • Businova, P., J. Chomoucka, J. Prasek, R. Hrdy, J. Drbohlavova, P. Sedlacek, and J. Hubalek. 2011. Polymer-coated iron oxide magnetic nanoparticles – Preparation and characterization. NanoCon2011 Proceedings, 3rd International Conference :1–6.
  • Caspani, S., R. Magalhães, J. P. Araújo, and C. T. Sousa. 2020. Magnetic nanomaterials as contrast agents for MRI. Materials 13 (11):2586. doi:10.3390/ma13112586.
  • Creanga, D., M. Balasoiu, D. Soloviov, A. M. Balasoiu-Gaina, E. Puscasu, N. Lupu, and C. Stan. 2018. Small-angle neutron scattering investigations of Co-doped iron oxide nanoparticles. Preliminary results. Journal of Physics: Conference Series 994 (1):12009. doi:10.1088/1742-6596/994/1/012009.
  • Cumbal, L., D. Delgado, and E. Murgueitio. 2014. Degradation of perchlorate dissolved in water by a combined application of ion exchange resin and zerovalent iron nanoparticles. In Advanced oxidation technologies. London: CRC Press.
  • Dheyab, M. A., A. A. Aziz, M. S. Jameel, O. A. Noqta, P. M. Khaniabadi, and B. Mehrdel. 2020. Simple rapid stabilization method through citric acid modification for magnetite nanoparticles. Scientific Reports 10 (1):10793. doi:10.1038/s41598-020-67869-8.
  • Gavilán, H., S. K. Avugadda, T. Fernández-Cabada, N. Soni, M. Cassani, B. T. Mai, R. Chantrell, and T. Pellegrino. 2021. Magnetic nanoparticles and clusters for magnetic hyperthermia: Optimizing their heat performance and developing combinatorial therapies to tackle cancer. Chemical Society Reviews 50 (20):11614–67. doi:10.1039/d1cs00427a.
  • George, T., A. T. Sunny, and T. Varghese. 2015. Magnetic properties of cobalt ferrite nanoparticles synthesized by sol-gel method, IOP Conference Series: Materials Science and Engineering 73:12050. doi:10.1088/1757-899X/73/1/012050.
  • Grubbs, R. B. 2007. Roles of polymer ligands in nanoparticle stabilization. Polymer Reviews 47 (2):197–215. doi:10.1080/15583720701271245.
  • Hassan, H. B. 2016. Density function theory B3LYP/6-31G** calculation of geometry optimization and energies of donor-bridge-acceptor molecular system. International Journal of Current Engineering and Technology 4 (4):2342–5.
  • Hey, J., C. Lewis, C. Smeeton, M. T. Oakley, and R. L. Johnston. 2016. Isomers and energy landscapes of perchlorate–water clusters and a comparison to pure water and sulfate–water clusters. The Journal of Physical Chemistry A 120 (23):4008–15. doi:10.1021/acs.jpca.6b01495.
  • Houshiar, M., F. Zebhi, Z. J. Razi, A. Alidoust, and Z. Askari. 2014. Synthesis of cobalt ferrite (CoFe2O4) nanoparticles using combustion, coprecipitation, and precipitation methods: A comparison study of size, structural, and magnetic properties. Journal of Magnetism and Magnetic Materials 371:43–8. doi:10.1016/j.jmmm.2014.06.059.
  • Kákay, A., M. W. Gutowski, L. Takacs, V. Franco, and L. K. Varga. 2004. Langevin granulometry of the particle size distribution. Journal of Physics A: Mathematical and General 37 (23):6027–41. doi:10.1088/0305-4470/37/23/005.
  • Kianfar, E. 2021. Magnetic nanoparticles in targeted drug delivery: A review. Journal of Superconductivity and Novel Magnetism 34 (7):1709–35. doi:10.1007/s10948-021-05932-9.
  • Kumar, L., P. Kumar, A. Narayan, and M. Kar. 2013. Rietveld analysis of XRD patterns of different sizes of nanocrystalline cobalt ferrite. International Nano Letters 3 (1):12–3. doi:10.1186/2228-5326-3-8.
  • Li, X., E. Liu, Z. Zhang, Z. Xu, and F. Xu. 2019. Solvothermal synthesis, characterization and magnetic properties of nearly superparamagnetic Zn-doped Fe3O4 nanoparticles. Journal of Materials Science: Materials in Electronics 30 (4):3177–85. doi:10.1007/s10854-018-00640-y.
  • Lichtenthaler, H. K., and A. R. Wellburn. 1983. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions 11 (5):591–2. doi:10.1042/bst0110591.
  • Liosis, C., A. Papadopoulou, E. Karvelas, T. E. Karakasidis, and I. E. Sarris. 2021. Heavy metal adsorption using magnetic nanoparticles for water purification: A critical review. Materials 14 (24):7500. doi:10.3390/ma14247500.
  • Mohammad, F. K., and B. R. Ridwan. 2015. Medium effect on solvation free energy, dipole moment and molecular reactivity of naproxen. Journal of Theoretical and Computational Science 2 :134.
  • Oh, J. J., B. J. Drouin, and E. A. Cohen. 2005. The torsion–rotation spectrum of perchloric acid, HClO4. Journal of Molecular Spectroscopy 234 (1):10–24. doi:10.1016/j.jms.2005.07.012.
  • Oprica, L., C. Nadejde, M. Andries, E. Puscasu, D. Creanga, and M. Balasoiu. 2015. Magnetic contamination of environment–laboratory simulation of mixed iron oxides impact on microorganism cells. Environmental Engineering and Management Journal 14 (3):581–6. doi:10.30638/eemj.2015.063.
  • Patterson, A. 1939. The Scherrer formula for X-ray particle size determination. Physical Review 56 (10):978–82. doi:10.1103/PhysRev.56.978.
  • Popescu, L., D. Buzatu, M. Balasoiu, C. Stan, B. S. Vasile, L. Sacarescu, D. Creanga, O. Ivankov, D. Soloviov, and A.-M. Balasoiu-Gaina. 2019. Study on ageing of cobalt ferrite nanoparticles and their fate in the environment. Romanian Journal of Physics 64 (9-10):818.
  • Pratt, A. 2014. Environmental applications of magnetic nanoparticles. In Frontiers of nanoscience, vol. 6, 259–307. Oxford: Elsevier.
  • Puscasu, E., L. Sacarescu, A. Domocos, C. Leostean, R. Turcu, D. Creanga, and M. Balasoiu. 2016. Hydrophilic versus hydrophobic oleate coated magnetic particles. Romanian Journal of Physics 61 (5-6):946–56.
  • Puscasu, E., L. Sacarescu, L. Popescu-Lipan, V. Nica, M. Grigoras, A. Domocos, N. Lupu, and D. Creanga. 2019. Study on the effect of some surface phenomena on the properties of citrate capped cobalt doped ferrites. Applied Surface Science 483:1182–91. doi:10.1016/j.apsusc.2019.03.326.
  • Racuciu, M., D. E. Creanga, A. Airinei, D. Chicea, and V. Badescu. 2010. Synthesis and properties of magnetic nanoparticles coated with biocompatible compounds. Materials Science-Poland 28 (3):609–16.
  • Racuciu, M., D. Creanga, and C. Nadejde. 2013. Comparison among the physical properties of various suspensions of magnetite nanoparticles stabilized in water using different organic shells. U. Polit. Bucharest Scientific Bulletin A 75 (3):209–16.
  • Racuciu, M., and S. Oancea. 2019. ATR-FTIR versus Raman spectroscopy used for structural analyses of the iron oxide nanoparticles. Romanian Reports in Physics 71:1–10.
  • Rajan, A., and N. K. Sahu. 2020. Review on magnetic nanoparticle-mediated hyperthermia for cancer therapy. Journal of Nanoparticle Research 22 (11):319. doi:10.1007/s11051-020-05045-9.
  • Ranoo, S., B. B. Lahiri, and J. Philip. 2020. Enhancement in field induced heating efficiency of TMAOH coated superparamagnetic Fe3O4 nanoparticles by texturing under a static bias field. Journal of Magnetism and Magnetic Materials 498:166138. doi:10.1016/j.jmmm.2019.166138.
  • Reyes-Ortega, F., Á. V. Delgado, E. K. Schneider, B. L. Checa Fernández, and G. R. Iglesias. 2018. Magnetic nanoparticles coated with a thermosensitive polymer with hyperthermia properties. Polymers 10 (1):1–15.
  • Rudin, A., and P. Choi. 2012. The elements of polymer science and engineering. Cambridge, USA: Academic press.
  • Sanpo, N., J. Wang, and C. C. Berndt. 2013. Sol-gel synthesized copper-substituted cobalt ferrite nanoparticles for biomedical applications. Journal of Nano Research 22:95–106. doi:10.4028/www.scientific.net/JNanoR.22.95.
  • Santos, P. J., and R. Macfarlane. 2020. Reinforcing supramolecular bonding with magnetic dipole interactions to assemble dynamic nanoparticle superlattices. Journal of the American Chemical Society 142 (3):1170–4. doi:10.1021/jacs.9b11476.
  • Selvamani, T., D. Gangadharan, and S. Anandan. 2019. Synthetic strategies of nanobioconjugates for bioelectrochemical applications. Bioelectrochemical Interface Engineering :411–30.
  • Shafiee, M., M. Reza, M. Ghashang, and A. Fazlinia. 2013. Preparation of 1, 4-dihydropyridine derivatives using perchloric acid adsorbed on magnetic Fe3O4 nanoparticles coated with silica. Current Nanoscience 9 (2):197–201. doi:10.2174/1573413711309020006.
  • Sodipo, B. K., and A. A. Aziz. 2013. Sonochemical synthesis of silica coated super paramagnetic iron oxide nanoparticles. In Materials science forum, vol. 756, 74–9. Switzerland: Trans Tech Publications Ltd. doi:10.4028/www.scientific.net/MSF.756.74.
  • Soler, M. A. G., T. F. O. Melo, S. W. da Silva, E. C. D. Lima, A. C. M. Pimenta, V. K. Garg, A. C. Oliveira, and P. C. Morais. 2004. Structural stability study of cobalt ferrite-based nanoparticle using micro Raman spectroscopy. Journal of Magnetism and Magnetic Materials 272-276:2357–8. doi:10.1016/j.jmmm.2003.12.582.
  • Srinivasan, S. Y., K. M. Paknikar, V. Gajbhiye, and D. Bodas. 2018. Magneto‐conducting core/shell nanoparticles for biomedical applications. ChemNanoMat 4 (2):151–64. doi:10.1002/cnma.201700278.
  • Tan, H., B. Liu, and Y. Chen. 2013. Effects of the electrostatic repulsion between nanoparticles on colorimetric sensing: An investigation of determination of Hg2+ with silver nanoparticles. Plasmonics 8 (2):705–13. doi:10.1007/s11468-012-9461-2.
  • Tiriba, G., M. Balasoiu, E. Puscasu, L. Sacarescu, C. Stan, and D. E. Creanga. 2017. Microstructural characterization of co-doped iron oxide nanoparticles. U. Polit. Bucharest Scientific Bulletin A 79 (4):327–36.
  • Vochita, G., D. Creanga, and E. Focanici-Ciurlica. 2012. Magnetic nanoparticle genetic impact on root tip cells of sunflower seedlings. Water, Air, & Soil Pollution 223 (5):2541–9. doi:10.1007/s11270-011-1046-8.
  • Wang, J., G. Li, T. Li, M. Zeng, and B. Sunden. 2021. Effect of various surfactants on stability and thermophysical properties of nanofluids. Journal of Thermal Analysis and Calorimetry 143 (6):4057–70. doi:10.1007/s10973-020-09381-9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.