80
Views
0
CrossRef citations to date
0
Altmetric
Preconcentration Techniques

Application of Nanocube-Functionalized Nitrogen-Doped Melamine Sponge for Dispersive Micro-Solid Phase Extraction (SPE) of Phenolic Compounds From Aquatic Media

&
Pages 1-16 | Received 20 Dec 2022, Accepted 13 Mar 2023, Published online: 29 Mar 2023

References

  • Akdogan, A., U. Divrikli, and L. Elci. 2013. Determination of triazine herbicides and metabolites by solid phase extraction with HPLC analysis. Analytical Letters 46 (15):2464–77. doi:10.1080/00032719.2013.800542.
  • Ali, M. M., Z. Zhu, D. Hussain, Z. Shen, Y. He, and Z. Du. 2021. Flexible and hierarchical metal-organic framework composite as solid-phase media for facile affinity-tip fabrication to selectively enrich glycopeptides and phosphopeptides. Talanta 233:122576. doi:10.1016/j.talanta.2021.122576.
  • Amiri, A., F. M. Zonoz, A. Targhoo, and H. R. Saadati-Moshtaghin. 2017. Enrichment of phenolic compounds from water samples by using magnetic Fe3O4 nanoparticles coated with a Keggin type heteropoly acid of type H6[BFe(OH2)W11O39] as a sorbent. Microchimica Acta 184 (4):1093–101. doi:10.1007/s00604-017-2103-9.
  • An, Y., W. Ma, and K. H. Row. 2020. Preconcentration and determination of chlorophenols in wastewater with dispersive liquid–liquid microextraction using hydrophobic deep eutectic solvents. Analytical Letters 53 (2):262–72. doi:10.1080/00032719.2019.1646754.
  • Chatzimitakos, T., V. Samanidou, and C. D. Stalikas. 2017. Graphene-functionalized melamine sponges for microextraction of sulfonamides from food and environmental samples. Journal of Chromatography A 1522:1–8. doi:10.1016/j.chroma.2017.09.043.
  • Esrafili, A., M. Ghambarian, M. Tajik, and M. Baharfar. 2020. Spin-column micro-solid phase extraction of chlorophenols using MFU-4l metal-organic framework. Microchimica Acta 187 (1):1–9. doi:10.1007/s00604-019-4023-3.
  • Farhadi, K., A. A. Matin, H. Amanzadeh, P. Biparva, H. Tajik, A. A. Farshid, and H. Pirkharrati. 2014. A novel dispersive micro solid phase extraction using zein nanoparticles as the sorbent combined with headspace solid phase micro-extraction to determine chlorophenols in water and honey samples by GC-ECD. Talanta 128:493–9. doi:10.1016/j.talanta.2014.06.002.
  • Garba, Z. N., W. Zhou, I. Lawan, W. Xiao, M. Zhang, L. Wang, L. Chen, and Z. Yuan. 2019. An overview of chlorophenols as contaminants and their removal from wastewater by adsorption: A review. Journal of Environmental Management 241:59–75. doi:10.1016/j.jenvman.2019.04.004.
  • Ghorbani, M., M. Aghamohammadhassan, H. Ghorbani, and A. Zabihi. 2020. Trends in sorbent development for dispersive micro-solid phase extraction. Microchemical Journal 158:105250. doi:10.1016/j.microc.2020.105250.
  • Hong, J., X. Hao, T. Liu, W. Liu, M. Xie, M. Wang, Q. Xu, and B. Yang. 2020. Rapid synergistic cloud point extraction (RS-CPE) with partial least squares (PLS) for the simultaneous determination of chlorophenols (CPs) in environmental water samples using a microplate assay (MPA). Analytical Letters 53 (11):1719–33. doi:10.1080/00032719.2020.1717508.
  • Hu, X., C. Wang, R. Luo, C. Liu, J. Qi, X. Sun, J. Shen, W. Han, L. Wang, and J. Li. 2019. Double-shelled hollow ZnO/carbon nanocubes as an efficient solid-phase microextraction coating for the extraction of broad-spectrum pollutants. Nanoscale 11 (6):2805–11. doi:10.1039/C8NR09180C.
  • Hubner, P., N. R. Marcilio, and I. C. Tessaro. 2021. Gelatin/poly(vinyl alcohol) based hydrogel film – A potential biomaterial for wound dressing: Experimental design and optimization followed by rotatable central composite design. Journal of Biomaterials Applications 36 (4):682–700. doi:10.1177/0885328221992260.
  • Indrayanto, G. 2018. Validation of chromatographic methods of analysis: application for drugs that derived from herbs. In Profiles of drug substances, excipients and related methodology, vol. 43, 1st ed., 359–92. Elsevier. doi:10.1016/bs.podrm.2018.01.003.
  • Lin, X. R., E. Kwon, C. Hung, C. W. Huang, W. Da Oh, and K. Y. A. Lin. 2021. Co3O4 nanocube-decorated nitrogen-doped carbon foam as an enhanced 3-dimensional hierarchical catalyst for activating oxone to degrade sulfosalicylic acid. Journal of Colloid and Interface Science 584:749–59. doi:10.1016/j.jcis.2020.09.104.
  • Manouchehri, M., S. Seidi, and F. O. Abdullah. 2021. Application of magnetic nanomaterials in magnetic-chromatography: A review. Talanta 229:122273. doi:10.1016/j.talanta.2021.122273.
  • Manouchehri, M., S. Seidi, A. Tavasolinoor, and Y. Razeghi. 2023. A new approach of magnetic field application in miniaturized pipette-tip extraction for trace analysis of four synthetic hormones in breast milk samples. Food Chemistry 409:135222. doi:10.1016/j.foodchem.2022.135222.
  • Mirhosseinian, N. S., M. Anbia, and S. Salehi. 2020. Preparation and characterization of superhydrophobic melamine and melamine-derived carbon sponges modified with reduced graphene oxide–TiO2 nanocomposite as oil absorbent materials. Journal of Materials Science 55 (4):1536–52. doi:10.1007/s10853-019-04110-6.
  • Mirzaee, M. T., S. Seidi, Y. Razeghi, M. Manouchehri, and M. Shanehsaz. 2020. In-tube stir bar sorptive extraction based on 3-aminopropyl triethoxysilane surface-modified Ce-doped ZnAl layered double hydroxide thin film for determination of nonsteroidal anti-inflammatory drugs in saliva samples. Microchimica Acta 187 (9):1–11. doi:10.1007/s00604-020-04489-z.
  • Montaño, M., A. C. Gutleb, and A. J. Murk. 2013. Persistent toxic burdens of halogenated phenolic compounds in humans and wildlife. Environmental Science & Technology 47 (12):6071–81. doi:10.1021/es400478k.
  • Murtada, K. 2020. Trends in nanomaterial-based solid-phase microextraction with a focus on environmental applications—A review. Trends in Environmental Analytical Chemistry 25: e00077. doi:10.1016/j.teac.2019.e00077.
  • Sajid, M., M. K. Nazal, and I. Ihsanullah. 2021. Novel materials for dispersive (micro) solid-phase extraction of polycyclic aromatic hydrocarbons in environmental water samples: A review. Analytica Chimica Acta 1141:246–62. doi:10.1016/j.aca.2020.07.064.
  • Sefaty, B., M. Masrournia, Z. Es’haghi, and M. R. Bozorgmehr. 2021. Determination of tramadol and fluoxetine in biological and water samples by magnetic dispersive solid-phase microextraction (MDSPME) with gas chromatography–mass spectrometry (GC-MS). Analytical Letters 54 (5):884–902. doi:10.1080/00032719.2020.1786695.
  • Tahmasebi, E., and Y. Yamini. 2012. Facile synthesis of new nano sorbent for magnetic solid-phase extraction by self assembling of bis-(2,4,4-trimethyl pentyl)-dithiophosphinic acid on Fe3O4@Ag core@shell nanoparticles: Characterization and application. Analytica Chimica Acta 756:13–22. doi:10.1016/j.aca.2012.10.040.
  • Tang, C., and J. Tan. 2017. Determination of chlorophenols in sewage sludge and soil by high-performance liquid chromatography–tandem mass spectrometry with ultrasonic-assisted and solid-phase extraction. Analytical Letters 50 (18):2959–74. doi:10.1080/00032719.2017.1327537.
  • Tu, C., Y. Dai, K. Xu, M. Qi, W. Wang, L. Wu, and A. Wang. 2019. Determination of tetracycline in water and honey by iron(II, III)/aptamer-based magnetic solid-phase extraction with high-performance liquid chromatography analysis. Analytical Letters 52 (10):1653–69. doi:10.1080/00032719.2018.1560458.
  • Uy, M., and J. K. Telford. 2009. Optimization by design of experiment techniques. In 2009 IEEE Aerospace Conference Proceedings, 1–10. IEEE. doi:10.1109/AERO.2009.4839625.
  • Wang, X., H. Wang, P. Huang, X. Ma, X. Lu, and X. Du. 2017. Preparation of three-dimensional mesoporous polymer in situ polymerization solid phase microextraction fiber and its application to the determination of seven chlorophenols. Journal of Chromatography A 1479:40–7. doi:10.1016/j.chroma.2016.12.010.
  • Wang, Y., R. Ma, R. Xiao, L. Hao, Q. Wu, C. Wang, and Z. Wang. 2018. A hyper-cross linked polymer as an adsorbent for the extraction of chlorophenols. Microchimica Acta 185 (1):1–10. doi:10.1007/s00604-017-2649-6.
  • Yazdanpanah, M., and S. Nojavan. 2019. Micro-solid phase extraction of some polycyclic aromatic hydrocarbons from environmental water samples using magnetic β-cyclodextrin-carbon nano-tube composite as a sorbent. Journal of Chromatography A 1585:34–45. doi:10.1016/j.chroma.2018.11.066.
  • Yin, Y., L. Yan, Z. Zhang, J. Wang, and P. Lv. 2017. Magnetic molecularly imprinted polymer preconcentration of 4-chlorophenol with determination by high-performance liquid chromatography. Analytical Letters 50 (1):117–34. doi:10.1080/00032719.2016.1172233.
  • Yu, X., Y. Wei, C. Liu, J. Ma, H. Liu, S. Wei, W. Deng, J. Xiang, and S. Luo. 2019. Ultrafast and deep removal of arsenic in high-concentration wastewater: A superior bulk adsorbent of porous Fe2O3 nanocubes-impregnated graphene aerogel. Chemosphere 222:258–66. doi:10.1016/j.chemosphere.2019.01.130.
  • Zada, A., M. Khan, M. A. Khan, Q. Khan, A. Habibi-Yangjeh, A. Dang, and M. Maqbool. 2021. Review on the hazardous applications and photodegradation mechanisms of chlorophenols over different photocatalysts. Environmental Research 195:110742. doi:10.1016/j.envres.2021.110742.
  • Zare, F. D., M. Allahdadlalouni, M. Y. Baktash, and H. Bagheri. 2020. Reduced graphene oxide–melamine formaldehyde as a highly efficient platform for needle trap microextraction of volatile organic compounds. Microchemical Journal 157:104932. doi:10.1016/j.microc.2020.104932.
  • Zhang, J., X. Dang, J. Dai, Y. Hu, and H. Chen. 2021. Simultaneous detection of eight phenols in food contact materials after electrochemical assistance solid-phase microextraction based on amino functionalized carbon nanotube/polypyrrole composite. Analytica Chimica Acta 1183:338981. doi:10.1016/j.aca.2021.338981.
  • Zhou, Q., M. Lei, Y. Wu, and Y. Yuan. 2017. Magnetic solid phase extraction of typical polycyclic aromatic hydrocarbons from environmental water samples with metal organic framework MIL-101 (Cr) modified zero valent iron nano-particles. Journal of Chromatography. A 1487:22–9. doi:10.1016/j.chroma.2017.01.046.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.