90
Views
1
CrossRef citations to date
0
Altmetric
Metal Speciation

Speciation of Fe(II) and Fe(III) in Chinese Yellow Rice Wine Using Direct Immersion Dual-Drop Microextraction Coupled with Graphite Furnace Atomic Absorption Spectrometry (GFAAS)

, , , &
Pages 17-29 | Received 18 Jan 2023, Accepted 14 Mar 2023, Published online: 24 Mar 2023

References

  • Alikhani, A., M. Eftekhari, M. Chamsaz, and M. Gheibi. 2018. Paired-ion-based liquid phase microextraction for speciation of iron (Fe2+, Fe3+) followed by flame atomic absorption spectrometry. Journal of Food Measurement and Characterization 12 (1):573–80. doi:10.1007/s11694-017-9669-0.
  • Bahar, S., and R. Zakerian. 2012. Speciation of Fe(II) and Fe(III) by using dispersive liquid–liquid microextraction and flame atomic absorption spectrometry. Journal of the Brazilian Chemical Society 23 (5):944–50. doi:10.1590/S0103-50532012000500021.
  • Bai, W., S. Sun, W. Zhao, M. Qian, X. Liu, and W. Chen. 2017. Determination of ethyl carbamate (EC) by GC-MS and characterization of aroma compounds by HS-SPME-GC-MS during wine frying status in Hakka yellow rice wine. Food Analytical Methods 10 (6):2068–77. doi:10.1007/s12161-016-0754-5.
  • Bazmandegan-Shamili, A., A. M. Haji Shabani, S. Dadfarnia, M. Saeidi, and M. Rohani Moghadam. 2015. Spectrophotometric determination of iron species using ionic liquid ultrasound assisted dispersive liquid liquid microextraction. Turkish Journal of Chemistry 39 (5):1059–68. doi:10.3906/kim-1504-9.
  • Borzoei, M., M. A. Zanjanchi, H. Sadeghi-Aliabadi, and L. Saghaie. 2018. Optimization of a methodology for determination of iron concentration in aqueous samples using a newly synthesized chelating agent in dispersive liquid-liquid microextraction. Food Chemistry 264:9–15. doi:10.1016/j.foodchem.2018.04.135.
  • Campillo, N., P. Vinas, R. Penalver, J. I. Cacho, and M. Hernandez-Cordoba. 2012. Solid-phase microextraction followed by gas chromatography for the speciation of organotin compounds in honey and wine samples: A comparison of atomic emission and mass spectrometry detectors. Journal of Food Composition and Analysis 25 (1):66–73. doi:10.1016/j.jfca.2011.08.001.
  • Chamsaz, M., M. Eftekhari, S. Tafreshi, A. Yekkebashi, and A. Eftekhari. 2014. Speciation and determination of iron using dispersive liquid- liquid microextraction based on solidification of organic drop followed by flame atomic absorption spectrometry. International Journal of Environmental Analytical Chemistry 94 (4):348–55. doi:10.1080/03067319.2013.840831.
  • Chang, X., N. Jiang, H. Zheng, Q. He, Z. Hu, Y. Zhai, and Y. Cui. 2007. Solid-phase extraction of iron(III) with an ion-imprinted functionalized silica gel sorbent prepared by a surface imprinting technique. Talanta 71 (1):38–43. doi:10.1016/j.talanta.2006.03.012.
  • Chen, Y., S. Feng, Y. Huang, and D. Yuan. 2015a. Redox speciation analysis of dissolved iron in estuarine and coastal waters with on-line solid phase extraction and graphite furnace atomic absorption spectrometry detection. Talanta 137:25–30. doi:10.1016/j.talanta.2015.01.017.
  • Chen, Y., Y. Huang, S. Feng, and D. Yuan. 2015b. Solid phase extraction coupled with a liquid waveguide capillary cell for simultaneous redox speciation analysis of dissolved iron in estuarine and coastal waters. Analytical Methods 7 (12):4971–8. doi:10.1039/C5AY00495K.
  • Chen, S., Y. Liu, C. Wang, J. Yan, and D. Lu. 2021. Magnetic dispersive micro-solid phase extraction coupled with dispersive liquid-liquid microextraction followed by graphite furnace atomic absorption spectrometry for quantification of Se(IV) and Se(VI) in food samples. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment 38 (9):1539–50. doi:10.1080/19440049.2021.1927202.
  • Clough, R., C. F. Harrington, S. J. Hill, Y. Madrid, and J. F. Tyson. 2022. Atomic Spectrometry Update: Review of advances in elemental speciation. Journal of Analytical Atomic Spectrometry 37 (7):1387–430. doi:10.1039/D2JA90029G.
  • Danilewicz, J. C. 2016. Fe(II):Fe(III) ratio and redox status of white wines. American Journal of Enology and Viticulture 67 (2):146–52. doi:10.5344/ajev.2015.15088.
  • Door, N. Y. D., A. Bazmandegan-Shamili, and M. R. Moghadam. 2021. Spectrophotometric determination of iron species using ultrasound-assisted temperature-controlled deep eutectic solvent dispersive liquid-phase microextraction and multisimplex optimization. International Journal of Environmental Analytical Chemistry 101 (2):251–62. doi:10.1080/03067319.2019.1664494.
  • Feist, B., and R. Sitko. 2018. Method for the determination of Pb, Cd, Zn, Mn and Fe in rice samples using carbon nanotubes and cationic complexes of batophenanthroline. Food Chemistry 249:38–44. doi:10.1016/j.foodchem.2017.12.082.
  • Ferreira, S. L. C., H. S. Ferreira, R. M. de Jesus, J. V. S. Santos, G. C. Brandao, and A. S. Souza. 2007. Development of method for the speciation of inorganic iron in wine samples. Analytica Chimica Acta 602 (1):89–93. doi:10.1016/j.aca.2007.09.002.
  • Grewal, S. K., K. P. Sharma, R. D. Bharadwaj, V. Hegde, S. Tripathi, S. Singh, P. K. Jain, P. K. Agrawal, and B. Mondal. 2020. Understanding genotypic variation and identification of promising genotypes for iron and zinc content in chickpea (Cicer arietinum L.). Journal of Food Composition and Analysis 88:103458. doi:10.1016/j.jfca.2020.103458.
  • He, M., S. Su, B. Chen, and B. Hu. 2020. Simultaneous speciation of inorganic selenium and tellurium in environmental water samples by polyaniline functionalized magnetic solid phase extraction coupled with ICP-MS detection. Talanta 207:120314. doi:10.1016/j.talanta.2019.120314.
  • Ibanez, J. G., A. Carreon-Alvarez, M. Barcena-Soto, and N. Casillas. 2008. Metals in alcoholic beverages: A review of sources, effects, concentrations, removal, speciation, and analysis. Journal of Food Composition and Analysis 21 (8):672–83. doi:10.1016/j.jfca.2008.06.005.
  • Jamali, M. R., M. Tavakoli, and R. Rahnama. 2016. Development of ionic liquid-based in situ solvent formation microextraction for iron speciation and determination in water and food samples. Journal of Molecular Liquids 216:666–70. doi:10.1016/j.molliq.2016.02.003.
  • Karadjova, I., B. Izgi, and S. Gucer. 2002. Fractionation and speciation of Cu, Zn and Fe in wine samples by atomic absorption spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy 57 (3):581–90. doi:10.1016/S0584-8547(01)00386-X.
  • Kasa, N. A., and E. G. Bakirdere. 2021. Determination of iron in licorice samples by slotted quartz tube flame atomic absorption spectrometry (FAAS) with matrix matching calibration strategy after complexation with Schiff base ligand-based dispersive liquid-liquid microextraction. Analytical Letters 54 (8):1284–94. doi:10.1080/00032719.2020.1801709.
  • Kazemi, E., N. Shokoufi, and F. Shemirani. 2011. Speciation and preconcentration of iron by cloud point extraction combined with fibre optic linear array detection spectrophotometry. Chemical Speciation & Bioavailability 23 (4):249–55. doi:10.3184/095422911X13103659768143.
  • Khalafi, L., P. Doolittle, and J. Wright. 2018. Speciation and determination of low concentration of iron in beer samples by cloud point extraction. Journal of Chemical Education 95 (3):463–7. doi:10.1021/acs.jchemed.7b00544.
  • Khezeli, T., and A. Daneshfar. 2017. Development of dispersive micro-solid phase extraction based on micro and nano sorbents. TrAC Trends in Analytical Chemistry 89:99–118. doi:10.1016/j.trac.2017.01.004.
  • Kim, E. J., Y. S. Kim, and J. M. Choi. 2008. Studies on solvent extraction using salphen for separative determination of trace Fe(II) and Fe(III) in water samples. Bulletin of the Korean Chemical Society 29 (1):99–103.
  • Liang, P., and R. Liu. 2007. Speciation analysis of inorganic arsenic in water samples by immobilized nanometer titanium dioxide separation and graphite furnace atomic absorption spectrometric determination. Analytica Chimica Acta 602 (1):32–6. doi:10.1016/j.aca.2007.09.012.
  • Liang, P., H. Sang, and Z. Sun. 2006. Cloud point extraction and graphite furnace atomic absorption spectrometry determination of manganese(II) and iron(III) in water samples. Journal of Colloid and Interface Science 304 (2):486–90. doi:10.1016/j.jcis.2006.09.006.
  • Liu, L,., J. Cheng, Y. Yuan and, and Su, Y. 2020. Ultrasound-assisted replacement reaction for the simultaneous speciation analysis of Fe(II)-EDTA and Fe(III)-EDTA in absorbing liquid of denitrification system with LC-ICP-OES. Atomic Spectroscopy 41 (5):242–8. doi:10.46770/AS.2020.06.004.
  • Liu, J,., G. Chi, C. Jiang, J. Tai, J. Peng and, and Hu, Y. 2004. Ionic liquid-based liquid-phase microextraction, a new sample enrichment procedure for liquid chromatography. Journal of Chromatography. A 1026 (1-2):143–7. doi:10.1016/j.chroma.2003.11.005.
  • Luo, L., H. Lei, J. Yang, G. Liu, Y. Sun, W. Bai, H. Wang, Y. Shen, S. Chen, and Z. Xu. 2017. Development of an indirect ELISA for the determination of ethyl carbamate in Chinese rice wine. Analytica Chimica Acta 950:162–9. doi:10.1016/j.aca.2016.11.008.
  • Markovic, S., M. Gabric, M. I. Razborsek, R. Milacic, and J. Scancar. 2022. The use of enriched stable isotopic tracers of Cr-50(VI) and Cr-53(III) in a study of Cr speciation in wine and beer. Journal of Food Composition and Aanlysis 108:104422. doi:10.1016/j.jfca.2022.104422.
  • Mitreva, M., I. Dakova, and I. Karadjova. 2017. Iron(II) ion imprinted polymer for Fe(II)/Fe(III) speciation in wine. Microchemical Journal 132:238–44. doi:10.1016/j.microc.2017.01.023.
  • Moghadam, M. R., A. M. H. Shabani, and S. Dadfarnia. 2011. Spectrophotometric determination of iron species using a combination of artificial neural networks and dispersive liquid-liquid microextraction based on solidification of floating organic drop. Journal of Hazardous Materials 197:176–82. doi:10.1016/j.jhazmat.2011.09.073.
  • Mortada, W. I,., E. El-Defrawy, HA. Erfan and, and El-Asmy, MM. 2022. Cloud point extraction coupled with back-extraction for speciation of inorganic vanadium in water and determination of total vanadium in food samples by ICP-OES. Journal of Food Composition and Aanlysis 108:104445. doi:10.1016/j.jfca.2022.104445.
  • Peng, B., Y. Shen, Z. Gao, M. Zhou, Y. Ma, and S. Zhao. 2015. Determination of total iron in water and foods by dispersive liquid-liquid microextraction coupled with microvolume UV-vis spectrophotometry. Food Chemistry 176:288–93. doi:10.1016/j.foodchem.2014.12.084.
  • Pradhan, S. K., B. Ambade, and P. K. Tarafder. 2019. Speciation of Fe (II) and Fe (III) in geological samples by solvent extraction and flame atomic absorption spectrometry (FAAS). Atomic Spectroscopy 40 (4):145–51. doi:10.46770/AS.2019.04.006.
  • Pu, X,., Z. Hu, C. Jiang and, and Huang, B. 2005. Speciation of dissolved iron(II) and iron(III) in environmental water samples by gallic acid-modified nanometer-sized alumina micro-column separation and ICP-MS determination. The Analyst 130 (8):1175–81. doi:10.1039/b502548f.
  • Saraiva, M., P. Jitaru, and J. J. Sloth. 2021. Speciation analysis of Cr(III) and Cr(VI) in bread and breakfast cereals using species-specific isotope dilution and HPLC-ICP-MS. Journal of Food Composition and Analysis 102:103991. doi:10.1016/j.jfca.2021.103991.
  • Shirkhanloo, H., A. Khaligh, H. Z. Mousavi, and A. Rashidi. 2016. Ultrasound assisted-dispersive-micro-solid phase extraction based on bulky amino bimodal mesoporous silica nanoparticles for speciation of trace manganese (II)/(VII) ions in water samples. Microchemical Journal 124:637–45. doi:10.1016/j.microc.2015.10.008.
  • Tafti, E. N., A. M. H. Shabani, S. Dadfarnia, and Z. D. Firouzabadi. 2021. In syringe-supramolecular dispersive liquid-liquid microextraction followed by atomic absorption spectrometric determination for iron species in water and total iron in food samples. International Journal of Environmental Analytical Chemistry 1965135:1–12. doi:10.1080/03067319.2021.1965135.
  • Tasev, K., I. Karadjova, S. Arpadjan, J. Cvetkovic, and T. Stafilov. 2006. Liquid/liquid extraction and column solid phase extraction procedures for iron species determination in wines. Food Control 17 (6):484–8. doi:10.1016/j.foodcont.2005.02.010.
  • Xia, L., Y. Wu, Z. Jiang, S. Li, and B. Hu. 2003. Speciation of Fe(III) and Fe(II) in water samples by liquid-liquid extraction combined with low-temperature electrothermal vaporization (ETV) ICP-AES. International Journal of Environmental Analytical Chemistry 83 (11):953–62. doi:10.1080/03067310310001608803.
  • Xiong, C., Z. Jiang, and B. Hu. 2006. Speciation of dissolved Fe(II) and Fe(III) in environmental water samples by micro-column packed with N-benzoyl-N-phenylhydroxylamine loaded on microcrystalline naphthalene and determination by electrothermal vaporization inductively coupled plasma-optical emission spectrometry. Analytica Chimica Acta 559 (1):113–9. doi:10.1016/j.aca.2005.11.051.
  • Xu, F., J. Hu, J. Zhang, X. Hou, and X. Jiang. 2018. Nanomaterials in speciation analysis of mercury, arsenic, selenium, and chromium by analytical atomic/molecular spectrometry. Applied Spectroscopy Reviews 53 (2–4):333–48. doi:10.1080/05704928.2017.1323310.
  • Yaman, M., and G. Kaya. 2005. Speciation of iron(II) and (III) by using solvent extraction and flame atomic absorption spectrometry. Analytica Chimica Acta 540 (1):77–81. doi:10.1016/j.aca.2004.08.018.
  • Yan, X., N. J. Hendry, and R. Kerrich. 2000. Speciation of dissolved iron(III) and iron(II) in water by on-line coupling of flow injection separation and preconcentration with inductively coupled plasma mass spectrometry. Analytical Chemistry 72 (8):1879–84. doi:10.1021/ac9909655.
  • Yan, J., C. Zhang, C. Wang, D. Lu, and S. Chen. 2022. Speciation of inorganic vanadium by direct immersion dual-drop microextraction coupled with graphite furnace atomic absorption spectrometry detection. Microchemical Journal 182:107927. doi:10.1016/j.microc.2022.107927.
  • Yan, J., C. Zhang, C. Wang, D. Lu, and S. Chen. 2023. Direct immersion dual-drop microextraction for simultaneous separation and enrichment of Cr(III) and Cr(IV) in food samples prior to graphite furnace atomic absorption spectrometry detection. Food Chemistry 406:134276. doi:10.1016/j.foodchem.2022.13427.
  • Yao, L., Y. Zhu, W. Xu, H. Wang, X. Wang, J. Zhang, H. Liu, and C. Lin. 2019. Combination of dispersive solid phase extraction with dispersive liquid-liquid microextraction for the sequential speciation and preconcentration of Cr(III) and Cr(VI) in water samples prior to graphite furnace atomic absorption spectrometry determination. Journal of Industrial and Engineering Chemistry 72:189–95. doi:10.1016/j.jiec.2018.12.018.
  • Yu, H,., L. Du, R. Wu, Q. Li, X. Sun and, and Hou, H. 2018. Trace arsenic speciation analysis of bones by high performance liquid chromatography-inductively coupled plasma mass spectrometry. Microchemical Journal 141:176–80. doi:10.1016/j.microc.2018.05.013.
  • Zou, W., C. Li, J. Hu, and X. Hou. 2020. Selective determination of Cr(VI) and non-chromatographic speciation analysis of inorganic chromium by chemical vapor generation-inductively coupled plasma mass spectrometry. Talanta 218:121128. doi:10.1016/j.talanta.2020.121128.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.