240
Views
1
CrossRef citations to date
0
Altmetric
Vibrational Spectroscopy

Non-Destructive Monitoring of the Ripening of Plums Using Confocal Micro-Raman and Laser Induced Fluorescence Spectroscopy

, , , , , , , , , & show all
Pages 531-548 | Received 17 Nov 2022, Accepted 11 May 2023, Published online: 01 Jun 2023

References

  • Betemps, D. L., J. C. Fachinello, S. P. Galarça, N. M. Portela, D. Remorini, R. Massai, and G. Agati. 2012. Non-destructive evaluation of ripening and quality traits in apples using a multiparametric fluorescence sensor. Journal of the Science of Food and Agriculture 92 (9):1855–64. doi:10.1002/jsfa.5552.
  • Bhosale, A. A., and K. K. Sundaram. 2015. Nondestructive method for ripening prediction of papaya. Procedia Technology 19:623–30. doi:10.1016/j.protcy.2015.02.088.
  • Bratu, A., C. Popa, M. Bojan, P. C. Logofatu, and M. Petrus. 2021. Non-destructive methods for fruit quality evaluation. Scientific Reports 11 (1):7782. doi:10.1038/s41598-021-87530-2.
  • Bron, I. U., R. V. Ribeiro, M. Azzolini, A. P. Jacomino, and E. C. Machado. 2004. Chlorophyll fluorescence as a tool to evaluate the ripening of ‘Golden’ papaya fruit. Postharvest Biology and Technology 33 (2):163–73. doi:10.1016/j.postharvbio.2004.02.004.
  • DeEll, J. R., and P. M. A. Toivonen. 2003. Use of chlorophyll fluorescence in postharvest quality assessments of fruits and vegetables. In Practical applications of chlorophyll fluorescence in plant biology, eds. by DeEll, J. R. and P. M. A. Toivonen, 203–42. Boston, MA: Springer. doi:10.1007/978-1-4615-0415-3_7.
  • Gebishu, M., B. Fikadu, B. Bekele, L. T. Jule, N. Nagaprasad, and K. Ramaswamy. 2022. Fluorescence and uv/visible spectroscopic investigation of orange and mango fruit juice quality in case of Adama Town. Scientific Reports 12 (1):7345. doi:10.1038/s41598-022-11471-7.
  • Igwe, E. O., and K. E. Charlton. 2016. Review a systematic review on the health effects of plums (Prunus domestica and Prunus salicina). Phytotherapy Research 30 (5):701–31. doi:10.1002/ptr.5581.
  • Kapoor, L., A. J. Simkin, C. G. P. Doss, and R. Siva. 2022. Fruit ripening: Dynamics and integrated analysis of carotenoids and anthocyanins. BMC Plant Biology 22 (1):27. doi:10.1186/s12870-021-03411-w.
  • Karppinen, K., P. Tegelberg, H. Häggman, and L. Jaakola. 2018. Abscisic acid regulates anthocyanin biosynthesis and gene expression associated with cell wall modification in ripening bilberry (Vaccinium myrtillus L.) fruits. Frontiers in Plant Science 9:1259. doi:10.3389/fpls.2018.01259.
  • Khodabakhshian, R., N. L. Martínez, H. H. Telle, and A. G. Ureña. 2013. Monitoring LED-induced carotenoid increase in grapes by transmission resonance Raman spectroscopy. Chemical Physics Letters 559:26–9. doi:10.1016/j.cplett.2012.12.054.
  • Khodabakhshian, R. 2019. Feasibility of using Raman spectroscopy for detection of tannin changes in pomegranate fruits during maturity. Scientia Horticulturae 257:108670. doi:10.1016/j.scienta.2019.108670.
  • Khoo, H. E., A. Azlan, S. T. Tang, and S. M. Lim. 2017. Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food & Nutrition Research 61 (1):1361779. doi:10.1080/16546628.2017.1361779.
  • Kniggendorf, A., T. W. Gau, and M. Meinhardt-Wollweber. 2011. Hierarchical cluster analysis (HCA) of microorganisms: An assessment of algorithms for resonance Raman spectra. Applied Spectroscopy 65 (2):165–73. doi:10.1366/10-06064.
  • Lai, A., E. Santangelo, G. P. Soressi, and R. Fantoni. 2007. Analysis of the main secondary metabolites produced in tomato (Lycopersicon esculentum, Mill.) epicarp tissue during fruit ripening using fluorescence techniques. Postharvest Biology and Technology 43 (3):335–42. doi:10.1016/j.postharvbio.2006.09.016.
  • Lakshmi, S., A. K. Pandey, N. Ravi, O. P. Chauhan, N. Gopalan, and R. K. Sharma. 2017. Non-destructive quality monitoring of fresh fruits and vegetables. Defence Life Science Journal 2 (2):103–10. doi:10.14429/dlsj.2.11379.
  • Lechaudel, M., L. Urban, and J. Joas. 2010. Chlorophyll fluorescence, a nondestructive method to assess maturity of mango fruits (Cv. ‘Cogshall’) without growth conditions bia. Journal of Agricultural and Food Chemistry 58 (13):7532–8. doi:10.1021/jf101216t.
  • Legner, R., M. Voigt, C. Servatius, J. Klein, A. Hambitzer, and M. Jaeger. 2021. A four-level maturity index for hot peppers (Capsicum annum) using non-invasive automated mobile Raman spectroscopy for on-site testing. Applied Sciences 11 (4):1614. doi:10.3390/app11041614.
  • Li, B., J. Lecourt, and G. Bishop. 2018. Advances in non-destructive early assessment of fruit ripeness towards defining optimal time of harvest and yield prediction—a review. Plants 7 (1):3. doi:10.3390/plants7010003.
  • Liaudanskas, M., R. Okulevičiūtė, J. Lanauskas, D. Kviklys, K. Zymonė, T. Rendyuk, V. Žvikas, N. Uselis, and V. Janulis. 2020. Variability in the content of phenolic compounds in plum fruit. Plants (Basel) 9 (11):1611. doi:10.3390/plants9111611.
  • Lin, Z., X. Zhao, J. Huang, W. Liu, Y. Zheng, X. Yang, Y. Zhang, M. L. Chapelle, and W. Fu. 2019. Rapid screening of colistin-resistant Escherichia coli, Acinetobacter baumannii and Pseudomonas aeruginosa by the use of Raman spectroscopy and hierarchical cluster analysis. The Analyst 144 (8):2803–10. doi:10.1039/c8an02220h.
  • Mazza, G. 2018. Anthocyanins in fruits, vegetables, and grains. Boca Raton, FL: CRC Press.
  • Milani, A., M. Basirnejad, S. Shahbazi, and A. Bolhassani. 2017. Carotenoids: Biochemistry, pharmacology and treatment. British Journal of Pharmacology 174 (11):1290–324. doi:10.1111/bph.13625.
  • Nekvapil, F., I. Brezestean, D. Barchewitz, B. Glamuzina, V. Chiş, and S. C. Pinzaru. 2018. Citrus fruits freshness assessment using Raman spectroscopy. Food Chemistry 242:560–7. doi:10.1016/j.foodchem.2017.09.105.
  • Obledo-Vázquez, E. N., and J. Cervantes-Martínez. 2017. Laser-induced fluorescence spectral analysis of papaya fruits at different stages of ripening. Applied Optics 56 (6):1753–6. doi:10.1364/AO.56.001753.
  • Prasanna, V., T. N. Prabha, and R. N. Tharanathan. 2007. Fruit ripening phenomena - an overview. Critical Reviews in Food Science and Nutrition 47 (1):1–19. doi:10.1080/10408390600976841.
  • Riaz, M., M. Zia-Ul-Haq, and B. Saad. 2016. Biosynthesis and stability of anthocyanins. In Anthocyanins and human health: Biomolecular and therapeutic aspects. Switzerland: Springer.
  • Rogers, E. K. 1993. Instrumentation and sensors for the food industry. Oxford: Butterworth-Heinemann.
  • Rogez, H., D. R. Pompeu, S. N. T. A. Kwie, and Y. Larondelle. 2011. Sigmoidal kinetics of anthocyanin accumulation during fruit ripening: A comparison between açai fruits (Euterpe oleracea) and other anthocyanin-rich fruits. Journal of Food Composition and Analysis 24 (6):796–800. doi:10.1016/j.jfca.2011.03.015.
  • Sarimov, R. M., V. N. Lednev, A. V. Sibirev, and S. V. Gudkov. 2021. The use of fluorescence spectra for the detection of scab and rot in fruit and vegetable crops. Frontiers in Physics 8: 640887. doi:10.3389/fphy.2020.640887.
  • Schulz, H., and M. Baranska. 2007. Identification and quantification of valuable plant substances by IR and Raman spectroscopy. Vibrational Spectroscopy 43 (1):13–25. doi:10.1016/j.vibspec.2006.06.001.
  • Sharma, S., A. S. Bharti, R. Singh, and K. N. Uttam. 2019. Non-destructive phenotyping of chili pepper ripening using spectroscopic probes: A potential approach for shelf-life measurement. Analytical Letters 52 (10):1590–613. doi:10.1080/00032719.2018.1558231.
  • Sharma, S., A. S. Bharti, R. Singh, and K. N. Uttam. 2022. Non-destructive, label free evaluation of the biochemical profile associated with the growth and ripening process of jamun fruit by confocal micro Raman spectroscopy. Analytical Letters 55 (5):812–27. doi:10.1080/00032719.2021.1967968.
  • Sharma, S., C. Baran, A. Tripathi, A. Awasthi, A. Jaiswal, R. Uttam, A. S. Bharti, R. Singh, and K. N. Uttam. 2021. Phytochemical screening of the different cultivars of ixora flowers by non-destructive, label-free, and rapid spectroscopic techniques. Analytical Letters 54 (14):2276–92. doi:10.1080/00032719.2020.1855440.
  • Sharma, S., S. Srivastava, R. Singh, and K. N. Uttam. 2017. Label free and rapid spectroscopic evaluation of ripening of Syzygium cumini fruit. Spectroscopy Letters 50 (2):115–23. doi:10.1080/00387010.2017.1296871.
  • Spinardi, A., G. Cola, C. S. Gardana, and I. Mignani. 2019. Variation of anthocyanin content and profile throughout fruit development and ripening of highbush blueberry cultivars grown at two different altitudes. Frontiers in Plant Science 10:1045. doi:10.3389/fpls.2019.01045.
  • Tripathi, A., C. Baran, A. Jaiswal, A. Awasthi, R. Uttam, S. Sharma, A. S. Bharti, R. Singh, and K. N. Uttam. 2020. Investigating the carotenogenesis process in papaya fruits during maturity and ripening by non-destructive spectroscopic probes. Analytical Letters 53 (18):2903–20. doi:10.1080/00032719.2020.1760874.
  • Usenik, V., D. Kastelec, R. Veberic, and F. Štampar. 2008. Quality changes during ripening of plums (Prunus domestica L.). Food Chemistry 111 (4):830–6. doi:10.1016/j.foodchem.2008.04.057.
  • Usenik, V., F. Štampar, and R. Veberič. 2009. Anthocyanins and fruit colour in plums (Prunus domestica L.) during ripening. Food Chemistry 114 (2):529–34. doi:10.1016/j.foodchem.2008.09.083.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.