118
Views
2
CrossRef citations to date
0
Altmetric
Bioanalytical

Sensitive Fluorescent Determination of Silver Ion and Glutathione in Human Serum Using Polydopamine Nanodots as the Probe

, , , , &
Pages 595-606 | Received 04 Dec 2022, Accepted 16 May 2023, Published online: 05 Jun 2023

References

  • Barclay, T. G., H. M. Hegab, R. C. Stephen, and M. Ginic-Markovic. 2017. Versatile surface modification using polydopamine and related polycatecholamines: Chemistry, structure, and applications. Advanced Materials Interfaces 4 (19):1601192. doi:10.1002/admi.201601192.
  • Chen, M., Q. Wen, F. Gu, J. Gao, C. C. Zhang, and Q. Wang. 2018. Mussel chemistry assembly of a novel biosensing nanoplatform based on polydopamine fluorescent dot and its photophysical features. Chemical Engineering Journal 342:331–8. doi:10.1016/j.cej.2018.02.099.
  • Chu, S., H. Wang, Y. Du, F. Yang, L. Yang, and C. Jiang. 2020. Portable smartphone platform integrated with a nanoprobe-based fluorescent paper strip: Visual monitoring of glutathione in human serum for health prognosis. ACS Sustainable Chemistry & Engineering 8 (22):8175–83. doi:10.1021/acssuschemeng.0c00690.
  • Ci, Q., J. Liu, X. Qin, L. Han, H. Li, H. Yu, K. Lim, C. W. Zhang, L. Li, and W. Huang. 2018. Polydopamine dots-based fluorescent nanoswitch assay for reversible recognition of glutamic acid and Al3+ in human serum and living cell. ACS Applied Materials & Interfaces 10 (42):35760–9. doi:10.1021/acsami.8b12087.
  • Jiang, J., L. Zhu, L. Zhu, B. Zhu, and Y. Xu. 2011. Surface characteristics of a self-polymerized dopamine coating deposited on hydrophobic polymer films. Langmuir: The ACS Journal of Surfaces and Colloids 27 (23):14180–7. doi:10.1021/la202877k.
  • Jiang, C., C. Zhang, J. Song, X. Ji, and W. Wang. 2021. Cytidine-gold nanoclusters as peroxidase mimetic for colorimetric detection of glutathione (GSH), glutathione disulfide (GSSG) and glutathione reductase (GR). Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 250:119316. doi:10.1016/j.saa.2020.119316.
  • Jiang, C., F. Huang, Y. Chen, and L. Jiang. 2021. Highly uniform self-assembled monolayers of silver nanospheres for the sensitive and quantitative detection of glutathione by SERS. Dalton Transactions (Cambridge, England : 2003) 50 (30):10436–45. doi:10.1039/d1dt01474a.
  • Jiao, Y., Y. Gao, Y. Meng, W. Lu, Y. Liu, H. Han, S. Shuang, L. Li, and C. Dong. 2019. One-step synthesis of label-free ratiometric fluorescence carbon dots for the detection of silver ions and glutathione and cellular imaging applications. ACS Applied Materials & Interfaces 11 (18):16822–9. doi:10.1021/acsami.9b01319.
  • Kannappan, S., L. Prabakaran, N. Nesakumar, K. J. Babu, A. J. Kulandaisamy, and J. B. B. Rayappan. 2023. Design and development of a non-enzymatic electrochemical biosensor for the detection of glutathione. Electroanalysis 35 (1):1–12. doi:10.1002/elan.202100650.
  • Lagutschenkov, A., R. K. Sinha, P. Maitre, and O. Dopfer. 2010. Structure and infrared spectrum of the Ag+-phenol ionic complex. The Journal of Physical Chemistry. A 114 (42):11053–9. doi:10.1021/jp100853m.
  • Lai, X., Y. Shen, S. Gao, Y. Chen, Y. Cui, D. Ning, X. Ji, Z. Liu, and L. Wang. 2022. The Mn-modified porphyrin metal-organic framework with enhanced oxidase-like activity for sensitively colorimetric detection of glutathione. Biosensors & Bioelectronics 213:114446. doi:10.1016/j.bios.2022.114446.
  • Li, J., Y. Wang, S. Sun, A.-M. Lv, K. Jiang, Y. Li, Z. Li, and H. Lin. 2020. Disulfide bond-based self-crosslinked carbon-dots for turn-on fluorescence imaging of GSH in living cells. The Analyst 145 (8):2982–7. doi:10.1039/D0AN00071J.
  • Li, L., J. Chen, R. Jin, Y. Yan, Z. Song, J. Wang, X. Wang, Q. Zhang, and C. Zhang. 2022. 2-Mercaptobenzothiazole-supported ratiometric fluorescent copper nanoclusters for activatable GSH sensing to drive tumor recognition. Colloids and Surfaces B: Biointerfaces 217:112698. doi:10.1016/j.colsurfb.2022.112698.
  • Li, G., W. Ma, Y. Yang, C. Zhong, H. Huang, D. Ouyang, Y. He, W. Tian, J. Lin, and Z. Lin. 2021. Nanoscale covalent organic frameworks with donor-acceptor structures as highly efficient light-responsive oxidase-like mimics for colorimetric detection of glutathione. ACS Applied Materials & Interfaces 13 (41):49482–9. doi:10.1021/acsami.1c13997.
  • Li, F., Y. Chen, R. Lin, C. Miao, J. Ye, Q. Cai, Z. Huang, Y. Zheng, X. Lin, Z. Zheng, et al. 2021. Integration of fluorescent polydopamine nanoparticles on protamine for simple and sensitive trypsin assay. Analytica Chimica Acta 1148:338201. doi:10.1016/j.aca.2021.338201.
  • Li, Y., L. Zhang, Z. Zhang, Y. Liu, J. Chen, J. Liu, P. Du, H. Guo, and X. Lu. 2021. MnO2 nanospheres assisted by cysteine combined with MnO2 nanosheets as a fluorescence resonance energy transfer system for “switch-on” detection of glutathione. Analytical Chemistry 93 (27):9621–7. doi:10.1021/acs.analchem.1c01787.
  • Lin, J. H., C. J. Yu, Y. C. Yang, and W. L. Tseng. 2015. Formation of fluorescent polydopamine dots from hydroxyl radical-induced degradation of polydopamine nanoparticles. Physical Chemistry Chemical Physics 17 (23):15124–30. doi:10.1039/C5CP00932D.
  • Liu, M., J. Ji, X. Zhang, X. Zhang, B. Yang, F. Deng, Z. Li, K. Wang, Y. Yang, and Y. Wei. 2015. Self-polymerization of dopamine and polyethyleneimine: Novel fluorescent organic nanoprobes for biological imaging applications. Journal of Materials Chemistry. B 3 (17):3476–82. doi:10.1039/C4TB02067G.
  • Luo, J. S., Y. P. Jin, Y. M. Guo, and Q. Li. 2022. Redox-controlled synthesis of fluorescent polydopamine nanoparticles for label-free detection of glutathione. Inorganic Chemistry Communications 138:109307. doi:10.1016/j.inoche.2022.109307.
  • Luo, N., Z. Yang, F. Tang, D. Wang, M. Feng, X. Liao, and X. Yang. 2019. Fe3O4/carbon nanodot hybrid nanoparticles for the indirect colorimetric detection of glutathione. ACS Applied Nano Materials 2 (6):3951–9. doi:10.1021/acsanm.9b00854.
  • Ma, B., F. Liu, S. Zhang, J. Duan, Y. Kong, Z. Li, D. Tang, W. Wang, S. Ge, W. Tang, et al. 2018. Two-photon fluorescent polydopamine nanodots for CAR-T cell function verification and tumor cell/tissue detection. Journal of Materials Chemistry B 6 (40):6459–67. doi:10.1039/C8TB01930D.
  • Mazrad, Z. A. I., C. A. Choi, Y. M. Kwon, I. In, K. D. Lee, and S. Y. Park. 2017. Design of surface-coatable NIR-responsive fluorescent nanoparticles with PEI passivation for bacterial detection and killing. ACS Applied Materials & Interfaces 9 (38):33317–26. doi:10.1021/acsami.7b10688.
  • Munyemana, J. C., J. Chen, H. Tang, Y. Han, J. Wang, and H. Qiu. 2021. Discriminative detection of dopamine and tyrosinase based on polydopamine dots triggered by Fenton-like activity of Mn3O4 nanoparticles. ACS Applied Nano Materials 4 (3):2820–7. doi:10.1021/acsanm.0c03448.
  • Ni, P., Y. Sun, H. Dai, J. Hu, S. Jiang, Y. Wang, and Z. Li. 2015. Highly sensitive and selective colorimetric detection of glutathione based on Ag [I] ion-3,3′,5,5′-tetramethylbenzidine (TMB). Biosensors & Bioelectronics 63:47–52. doi:10.1016/j.bios.2014.07.021.
  • Qin, J., L. Zhang, and R. Yang. 2019. Powder carbonization to synthesize novel carbon dots derived from uric acid for the detection of Ag(I) and glutathione. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 207:54–60. doi:10.1016/j.saa.2018.08.066.
  • Su, H., and F. Zhao. 2022. Recent advances in intrinsically fluorescent polydopamine materials. Applied Sciences 12 (9):4560. doi:10.3390/app12094560.
  • Tang, L., S. Mo, S. G. Liu, Y. Ling, X. F. Zhang, N. B. Li, and H. Q. Luo. 2018. A sensitive “turn-on” fluorescent sensor for melamine based on FRET effect between polydopamine-glutathione nanoparticles and Ag nanoparticles. Journal of Agricultural and Food Chemistry 66 (9):2174–9. doi:10.1021/acs.jafc.7b05245.
  • Wang, C., Y. Gao, S. Hu, A. Zhu, Y. Ying, X. Guo, Y. Wu, Y. Wen, and H. Yang. 2022. MnO2 coated Au nanoparticles advance SERS detection of cellular glutathione. Biosensors & Bioelectronics 215:114388. doi:10.1016/j.bios.2022.114388.
  • Wang, N., M. Chen, J. Gao, X. Ji, J. He, J. Zhang, and W. Zhao. 2019. A series of BODIPY-based probes for the detection of cysteine and homocysteine in living cells. Talanta 195:281–9. doi:10.1016/j.talanta.2018.11.066.
  • Wang, X., Y. Zhang, Y. Jin, S. Wang, Z. Zhang, T. Zhou, G. Zhang, and F. Wang. 2023. An Off-Off fluorescence sensor based on ZnS quantum dots for detection of glutathione. Journal of Photochemistry and Photobiology A: Chemistry 435:114264. doi:10.1016/j.jphotochem.2022.114264.
  • Wang, Z., C. Xu, Y. Lu, G. Wei, G. Ye, T. Sun, and J. Chen. 2018. Microplasma electrochemistry controlled rapid preparation of fluorescent polydopamine nanoparticles and their application in uranium detection. Chemical Engineering Journal 344:480–6. doi:10.1016/j.cej.2018.03.096.
  • Xie, J., D. Cheng, P. Li, Z. Xu, X. Zhu, Y. Zhang, H. Li, X. Liu, M. Liu, and S. Yao. 2021. Au/metal-organic framework nanocapsules for electrochemical determination of glutathione. ACS Applied Nano Materials 4 (5):4853–62. doi:10.1021/acsanm.1c00394.
  • Xie, X., Z. Peng, X. Hua, Z. Wang, K. Deng, X. Yang, and H. Huang. 2020. Selectively monitoring glutathione in human serum and growth-associated living cells using gold nanoclusters. Biosensors & Bioelectronics 148:111829. doi:10.1016/j.bios.2019.111829.
  • Xiong, H., J. Xu, C. Yuan, X. Wang, W. Wen, X. Zhang, and S. Wang. 2019. Oxidation-controlled synthesis of fluorescent polydopamine for the detection of metal ions. Microchemical Journal 147:176–82. doi:10.1016/j.microc.2019.03.023.
  • Yan, F., Z. Bai, F. Zu, Y. Zhang, X. Sun, T. Ma, and L. C. Yan. 2019. Yellow-emissive carbon dots with a large Stokes shift are viable fluorescent probes for detection and cellular imaging of silver ions and glutathione. Mikrochimica Acta 186 (2):113. doi:10.1007/s00604-018-3221-8.
  • Yang, L., B. Gu, Z. Chen, Y. Yue, W. Wang, H. Zhang, X. Liu, S. Ren, W. Yang, and Y. Li. 2019. Synthetic biopigment supercapacitors. ACS Applied Materials & Interfaces 11 (33):30360–7. doi:10.1021/acsami.9b10956.
  • Yang, P., S. Zhang, X. Chen, X. Liu, Z. Wang, and Y. Li. 2020. Recent developments in polydopamine fluorescent nanomaterials. Materials Horizons 7 (3):746–61. doi:10.1039/C9MH01197H.
  • Yuan, X., F. Bai, H. Ye, H. Zhao, L. Zhao, and Z. Xiong. 2021. Smartphone-assisted ratiometric fluorescence sensing platform and logical device based on polydopamine nanoparticles and carbonized polymer dots for visual and point-of-care testing of glutathione. Analytica Chimica Acta 1188:339165. doi:10.1016/j.aca.2021.339165.
  • Zhang, J., H. Yang, S. Pan, H. Liu, and X. Hu. 2021. A novel “off-on-off” fluorescent-nanoprobe based on B, N co-doped carbon dots and MnO2 nanosheets for sensitive detection of GSH and Ag. +Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 244:118831. doi:10.1016/j.saa.2020.118831.
  • Zhao, S., X. Song, X. Bu, C. Zhu, G. Wang, F. Liao, S. Yang, and M. Wang. 2017. Polydopamine dots as an ultrasensitive fluorescent probe switch for Cr (VI) in vitro. Journal of Applied Polymer Science 134 (18):44784. doi:10.1002/app.44784.
  • Zhu, Y., J. Wu, K. Wang, H. Xu, M. Qu, Z. Gao, L. Guo, and J. Xie. 2021. Facile and sensitive measurement of GSH/GSSG in cells by surface-enhanced Raman spectroscopy. Talanta 224:121852. doi:10.1016/j.talanta.2020.121852.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.