214
Views
3
CrossRef citations to date
0
Altmetric
Voltammetry

Nafion/Multiwalled Carbon Nanotubes/Mesoporous Silica Composite Modified Glassy Carbon Electrode for the Simultaneous Electrochemical Determination of Indigo Carmine and Carbendazim by Differential Pulse Voltammetry

, , , , , , & show all
Pages 1241-1256 | Received 03 Jun 2023, Accepted 02 Aug 2023, Published online: 13 Aug 2023

References

  • Ana, L., Ł. Rajski, N. Belmonte-Valles, A. Uclés, S. Uclés, M. Mezcua, and A. R. Fernández-Alba. 2012. Pesticide analysis in teas and chamomile by liquid chromatography and gas chromatography tandem mass spectrometry using a modified QuEChERS method: Validation and pilot survey in real samples. Journal of Chromatography A 1268:109–22. doi:10.1016/j.chroma.2012.10.013.
  • Anna, D.-M., M. Zienkiewicz-Strzałka, S. Katarzyna, S. W. Andrzej, and K. Krzysztof. 2016. Evaluation of the SBA-15 materials ability to accumulation of 4-chlorophenol on carbon paste electrode. Adsorption 22 (4–6):801–12. doi:10.1007/s10450-016-9779-8.
  • Barbara, H. H., and G. Dryhurst. 1971. Electrochemical oxidation of theophylline at the pyrolytic graphite electrode. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 32 (3):405–14. doi:10.1016/S0022-0728(71)80143-2.
  • Berzas, J. J., J. R. Flores, M. J. V. Llerena, and N. R. Fariñas. 1999. Spectrophotometric resolution of ternary mixtures of Tartrazine, Patent Blue V and Indigo Carmine in commercial products. Analytica Chimica Acta 391 (3):353–64. doi:10.1016/s0003-2670(99)00215-9.
  • Chunhuan, T., S. Zhang, H. Wang, C. Chen, Z. Han, M. Chen, Y. Zhu, R. Cui, and G. Zhang. 2019. Three-dimensional nanoporous copper and reduced graphene oxide composites as enhanced sensing platform for electrochemical detection of carbendazim. Journal of Electroanalytical Chemistry 847:113243. doi:10.1016/j.jelechem.2019.113243.
  • Deffo, G., M. Basumatary, N. Hussain, R. Hazarika, S. Kalita, E. Njanja, and P. Puzari. 2022. Eggshell nano-CaCO3 decorated PANi/rGO composite for sensitive determination of ascorbic acid, dopamine, and uric acid in human blood serum and urine. Materials Today Communications 33:104357. doi:10.1016/j.mtcomm.2022.104357.
  • Deffo, G., R. C. T. Temgoua, S. F. Mbokou, E. Njanja, I. K. Tonle, and E. Ngameni. 2021. A sensitive voltammetric analysis and detection of Alizarin Red S onto a glassy carbon electrode modified by an organosmectite. Sensors International 2:100126. doi:10.1016/j.sintl.2021.100126.
  • Deffo, G., R. C. T. Temgoua, K. Y. Tajeu, E. Njanja, G. Doungmo, I. K. Tonle, and E. Ngameni. 2022. Signal amplification by electropolymerization of alizarin red S for improved diuron detection at organosmectite modified glassy carbon electrode. Journal of the Chinese Chemical Society 69 (2):349–58. doi:10.1002/jccs.202100387.
  • Deffo, G., T. F. N. Tene, L. M. Dongmo, S. L. Z. Jiokeng, and R. C. T. Temgoua. 2023., Differential pulse and square-wave voltammetry as sensitive methods for electroanalysis applications. In Reference module in chemistry, molecular sciences and chemical engineering. Amsterdam, The Netherlands: Elsevier. ISBN 978-0-12-409547-2. doi:10.1016/B978-0-323-85669-0.00040-4.
  • Dong, Y., Y. Lijun, and Z. Lei. 2017. Simultaneous electrochemical detection of benzimidazole fungicides carbendazim and thiabendazole using a novel nano-hybrid material modified electrode. Journal of Agricultural and Food Chemistry 65 (4):727–36. doi:10.1021/acs.jafc.6b04675.
  • Eduardo, C. M., E. R. Santana, and A. Spinelli. 2023. Nitrogen and sulfur co-doped graphene quantum dot-modified electrode for monitoring of multivitamins in energy drinks. Talanta 252:123836. doi:10.1016/j.talanta.2022.123836.
  • Fusako, I., M. Oishi, K. Kimura, A. Yasui, and K. Saito. 2004. Determination of synthetic food dyes in food by capillary electrophoresis. Shokuhin Eiseigaku Zasshi. Journal of the Food Hygienic Society of Japan 45 (3):150–5. doi:10.3358/shokueishi.45.150.
  • Giancarlo, B., G. Casalbore-Miceli, A. Geri, and D. Pietropaolo. 1993. Indigo carmine: An electrochemical study. Annali di Chimica 83 (7–8):355–63.
  • Gonzalez, M. D., C. Fernandez-Sanchez, and A. Costa-GarcÌa. 2002. Comparative voltammetric behavior of indigo carmine at screen-printed carbon electrodes. Electroanalysis 14 (10):665–70. doi:10.1002/1521-4109(200205)14:10<665:AIDELAN665>3.0.CO;2-C.
  • Hazem, M. A. S., N. A. Ghalwa, S. M. Saadeh, and H. E. Harazeen. 2013. Development of novel potentiometric sensors for determination of tartrazine dye concentration in foodstuff products. Food Chemistry 138 (1):126–32. doi:10.1016/j.foodchem.2012.10.048.
  • Incebay, H., and A. Kilic. 2022. Electrochemical determination of indigo carmine in food and water samples using a novel platform based on chiral amine-bis(phenolate) boron complex. Dyes and Pigments 197:109921. doi:10.1016/j.dyepig.2021.109921.
  • Jamballi, G. G. M. 2018. A novel poly (glycine) biosensor towards the detection of indigo carmine: A voltammetric study. Journal of Food and Drug Analysis 26 (1):1–8. doi:10.1016/j.jfda.2017.05.002.
  • Javier, D.-Á., M. M. Vivas, D. G. Gómez, E. R. Gonzalo, and R. C. Martínez. 2013. Capillaryelectrophoresis coupled to mass spectrometry for the determination of anthelmintic benzimidazoles in eggs using a QuEChERS with preconcentration as sample treatment. Journal of. Chromatography A 1278:166–74. doi:10.1016/j.chroma.2012.12.064.
  • Majid, A., and N. Ghodsi. 2014. Electrospun TiO2 nanofiber/graphite oxide modified electrode for electrochemical detection of L-DOPA in human cerebrospinal fluid. Sensors and Actuators B: Chemical 204:393–401. doi:10.1016/j.snb.2014.07.110.
  • Majid, A., M. Saberi, M. S. Ardaki, and A. Mohammadi. 2017. Mediated electrochemical method for the determination of indigo carmine levels in food products. Talanta 173:60–8. doi:10.1016/j.talanta.2017.05.062.
  • Manisankar, P., G. Selvanathan, and C. Vedhi. 2005. Utilization of sodium montmorillonite clay-modified electrode for the determination of isoproturon and carbendazim in soil and water samples. Applied Clay Science 29 (3–4):249–57. doi:10.1016/j.clay.2005.01.006.
  • Michal, K., M. Jaroniec, C. H. Ko, and R. Ryoo. 2000. Characterization of the Porous Structure of SBA-15. Chemistry of Materials 12 (7):1961–8. doi:10.1021/cm000164e.
  • Nahid, P., S. Rastegarzadeh, and A. Larki. 2015. Determination of fungicide carbendazim in water and soil samples using dispersive liquid-liquid microextraction and microvolume UV-Vis spectrophotometry. Talanta 134:24–9. doi:10.1016/j.talanta.2014.10.056.
  • Njanja, E., S. F. Mbokou, M. Pontie, M. Nacef, and I. K. Tonle. 2019. Comparative assessment of methylene blue biosorption using coffee husks and corn cobs: Towards the elaboration of a lignocellulosic‑based amperometric sensor. SN Applied Sciences 1 (6):1–14. doi:10.1007/s42452-019-0520-6.
  • Nongyue, H., S. Bao, and Q. Xu. 1998. Fe-containing mesoporous molecular sieves materials: Very active Friedel-Crafts alkylation catalysts. Applied Catalysis A: General 169 (1):29–36. doi:10.1016/S0926-860X(97)00347-5.
  • Piyali, B., A. Modak, S. Chatterjee, and A. Bhaumik. 2017. Bifunctionalized mesoporous SBA-15: A new heterogeneous catalyst for the facile synthesis of 5-hydroxymethylfurfural. ACS Sustainable Chemistry & Engineering 5 (3):2763–73. doi:10.1021/acssuschemeng.6b03100.
  • Rafael, H.-A., R. Nava, C. L. Peza-Ledesma, J. Lara-Romero, G. Alonso-Nunez, B. Pawelec, and E. M. Rivera-Munoz. 2013. SBA-15 mesoporous silica as catalytic support for hydrodesulfurization catalysts-review. Materials (Basel, Switzerland) 6 (9):4139–67. doi:10.3390/ma6094139.
  • Reyes, J., P. Barrales, and A. Dı́az. 2003. Gel-surface enhanced fluorescence sensing system coupled to a continuous-flow assembly for simultaneous monitoring of benomyl and carbendazim. Analytica Chimica Acta 493 (1):35–45. doi:10.1016/S0003-2670(03)00818-3.
  • Rongjing, C., D. Xu, X. Xie, Y. Yi, Y. Quan, M. Zhou, J. Gong, Z. Han, and G. Zhang. 2017. Phosphorus-doped helical carbon nanofibers as enhanced sensing platform for electrochemical detection of carbendazim. Food Chemistry 221:457–63. doi:10.1016/j.foodchem.2016.10.094.
  • Shweta, J. M., P. K. Keerthi, N. P. Shetti, and R. M. Kulkarn. 2020. Electroanalysis of carbendazim using MWCNT/Ca-ZnO modified electrode. Electroanalysis 32 (7):1590–9. doi:10.1002/elan.201900776.
  • Sudipta, K. K., J. Mondal, and A. Bhaumik. 2013. Tungstic acid functionalized mesoporous SBA-15: A novel heterogeneous catalyst for facile one-pot synthesis of 2-amino-4H chromenes in aqueous medium. Dalton Transactions (Cambridge, England: 2003) 42 (29):10515–24. doi:10.1039/C3DT50947H.
  • Sundari, A. P. L., S. P. Palaniappan, and P. Manisankar. 2010. Enhanced sensing of carbendazim, a fungicide on functionalized multiwalled carbon nanotube modified glassy carbon electrode and its determination in real samples. Analytical Letters 43 (9):1457–70. doi:10.1080/00032710903502066.
  • Teadoum, D. N., S. K. Noumbo, K. T. Arnaud, T. T. Ranil, A. D. Mvondo Zé, and I. K. Tonle. 2016. Square wave voltammetric determination of residues of carbendazim using a fullerene/multiwalled carbon nanotubes/nafion/coated glassy carbon electrode. International Journal of Electrochemistry 2016:1–9. doi:10.1155/2016/7839708.
  • Temgoua, R. C., T. U. Bussy, D. Alvarez-Dorta, N. Galland, J. Hémez, C. Thobie-Gautier, I. K. Tonlé, and M. Boujtita. 2021. Using electrochemistry coupled to high resolution mass spectrometry for the simulation of the environmental degradation of the recalcitrant fungicide carbendazim. Talanta 221:121448. doi:10.1016/j.talanta.2020.121448.
  • Tiago, A. S., G. F. Pereira, O. F. Filho, K. I. B. Eguiluz, and G. R. S. Banda. 2016. Electroanalytical sensing of indigo carmine dye in water samples using a cathodically pretreated boron-doped diamond electrode. Journal of Electroanalytical Chemistry 769:28–34. doi:10.1016/j.jelechem.2016.03.015.
  • Timofeeva, M. N., S. H. Jhung, Y. K. Hwang, D. K. Kim, V. N. Panchenko, M. S. Melgunov, A. C. Yu, and J. S. Chang. 2007. Ce-silica mesoporous SBA-15-type materials for oxidative catalysis: Synthesis, characterization, and catalytic application. Applied Catalysis A: General 317 (1):1–10. doi:10.1016/j.apcata.2006.07.014.
  • Tsai, C.-F., C.-H. Kuo, and D. Y.-C. Shih. 2015. Determination of 20 synthetic dyes in chili powders and syrup-preserved fruits by liquid chromatography/tandem mass spectrometry. Journal of Food and Drug Analysis 23 (3):453–62. doi:10.1016/j.jfda.2014.09.003.
  • Vandana, K., M. Sasidharan, and A. Bhaumik. 2015. Mesoporous BaTiO3@SBA-15 derived via solid state reaction and its excellent adsorption efficiency for the removal of hexavalent chromium from water. Dalton Transactions (Cambridge, England: 2003) 44 (4):1924–32. doi:10.1039/C4DT03180F.
  • Waldemar, K., H. Max, S. Simon, H. Julian, and K. Norbert. 2019. Kinetic study of leuco-indigo carmine oxidation and investigation of taylor and dean flow superposition in a coiled flow inverter. Chemical Engineering & Technology 42 (10):2052–60. doi:10.1002/ceat.201800753.
  • Xiaoning, L., Z. Huang, K. Huang, M. Qiu, F. L. Chen, Y. F. Zhang, Y. P. Wen, and J. Y. Chen. 2019. Highly sensitive detection of carbendazim and its electrochemical oxidation mechanism at a nanohybrid sensor. Journal of the Electrochemical Society 166 (6):B322–B327. doi:10.1149/2.0251906jes.
  • Yadi, M., G. Zhang, and J. Junhui. 2012. Spectroscopic studies of DNA interactions with food colorant indigo carmine with the use of ethidium bromide as a fluorescence probe. Journal of Agricultural and Food Chemistry 60 (43):10867–75. doi:10.1021/jf303698k.
  • Yu, X., F. Gao, T. Xiaolong, M. Xue, D. Runying, P. Guoying, Y. Yongfang, and L. Limin. 2019. Flake-like neodymium molybdate wrapped with multi-walled carbon nanotubes as an effective electrode material for sensitive electrochemical detection of carbendazim. Journal of Electroanalytical Chemistry 855:113468. doi:10.1016/j.jelechem.2019.113468.
  • Yujing, G., G. Shaojun, L. Jing, W. Erkang, and D. Shaojun. 2011. Cyclodextrin-graphene hybrid nanosheets as enhanced sensing platform for ultrasensitive determination of carbendazim. Talanta 84 (1):60–4. doi:10.1016/j.talanta.2010.12.007.
  • Zen, J. M., Y. S. Ting, and Y. Shih. 1998. Voltammetric determination of caffeine in beverages using a chemically modified electrode. The Analyst 123 (5):1145–7. doi:10.1039/A708360B.
  • Zhao, D., J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, and G. D. Stucky. 1998. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science (New York, NY) 279 (5350):5 548–552. doi:10.1126/science.279.5350.548.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.