107
Views
0
CrossRef citations to date
0
Altmetric
Bioanalytical

Peroxidase-like Nanozyme Composite-based Colorimetric Determination of Glutathione and Cysteine

, , , ORCID Icon &
Pages 1271-1281 | Received 27 May 2023, Accepted 03 Aug 2023, Published online: 14 Aug 2023

References

  • Cao, N., H. Zhou, H. Tan, R. Qi, J. Chen, S. Zhang, and J. Xu. 2019. Turn-on fluorescence detection of cysteine with glutathione protected silver nanoclusters. Methods and Applications in Fluorescence 7 (3):034004. doi:10.1088/2050-6120/ab27d9.
  • Cao, Y., J. Zhang, J. Yang, and W. Qin. 2023. Covalent organic framework-MnO2 nanoparticle composites for shape-selective sensing of bithiols. RSC Advances 13 (22):15006–14. doi:10.1039/d3ra01540h.
  • Chen, C., W. Liu, P. Ni, Y. Jiang, C. Zhang, B. Wang, J. Li, B. Cao, Y. Lu, and W. Chen. 2019. Engineering two-dimensional Pd nanoplates with exposed highly active {100} facets toward colorimetric acid phosphatase detection. ACS Applied Materials & Interfaces 11 (50):47564–70. doi:10.1021/acsami.9b16279.
  • Chen, X., L. Zhao, K. Wu, H. Yang, Q. Zhou, Y. Xu, Y. Zheng, Y. Shen, S. Liu, and Y. Zhang. 2021. Bound oxygen-atom transfer endows peroxidase-mimic M-N-C with high substrate selectivity. Chemical Science 12 (25):8865–71. doi:10.1039/d1sc02170b.
  • Finkel, T., and N. J. Holbrook. 2000. Oxidants, Oxidative stress and the biology of ageing. Nature 408 (6809):239–47. doi:10.1038/35041687.
  • Ganganboina, A. B., and R. A. Doong. 2018. The biomimic oxidase activity of layered V2O5 nanozyme for rapid and sensitive nanomolar detection of glutathione. Sensors and Actuators B: Chemical 273:1179–86. doi:10.1016/j.snb.2018.07.038.
  • Gao, L., J. Zhuang, L. Nie, J. Zhang, Y. Zhang, N. Gu, T. Wang, J. Feng, D. Yang, S. Perrett, et al. 2007. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nature Nanotechnology 2 (9):577–83. doi:10.1038/nnano.2007.260.
  • Gao, L., K. Fan, and X. Yan. 2017. Iron oxide nanozyme: A multifunctional enzyme mimetic for biomedical applications. Theranostics 7 (13):3207–27. doi:10.7150/thno.19738.
  • Guo, J., Y. Liu, J. Zha, H. Han, Y. Chen, and Z. Jia. 2021. Enhancing the peroxidase-mimicking activity of hemin by covalent immobilization in polymer nanogels. Polymer Chemistry 12 (6):858–66. doi:10.1039/D0PY01465F.
  • Hu, Y., X. Gao, Y. Zhu, F. Muhammad, S. Tan, W. Cao, S. Lin, Z. Jin, X. Gao, and H. Wei. 2018. Nitrogen-doped carbon nanomaterials as highly active and specific peroxidase mimics. Chemistry of Materials 30 (18):6431–9. doi:10.1021/acs.chemmater.8b02726.
  • Hwang, C., A. J. Sinskey, and H. F. Lodish. 1992. Oxidized redox state of glutathione in the endoplasmic reticulum. Science (New York, N.Y.) 257 (5076):1496–502. doi:10.2307/2879931.
  • Li, Z., X. Deng, X. Hong, and S. Zhao. 2022. Nanozyme based on dispersion of hemin by graphene quantum dots for colorimetric detection of glutathione. Molecules 27:6779–92. doi:10.3390/molecules27206779.
  • Lin, M., Y. Guo, Z. Liang, X. Zhao, J. Chen, and Y. Wang. 2019. Simple and fast determination of biothiols using Fe3+-3, 3′, 5, 5′-tetramethylbenzidine as a colorimetric probe. Microchemical Journal 147:319–23. doi:10.1016/j.microc.2019.03.049.
  • Lin, J., Q. Wang, X. Wang, Y. Zhu, X. Zhou, and H. Wei. 2020. Gold alloy-based nanozyme sensor arrays for biothiol detection. The Analyst 145 (11):3916–21. doi:10.1039/d0an00451k.
  • Liu, J., M. Cui, L. Niu, H. Zhou, and S. Zhang. 2016. Enhanced peroxidase-like properties of graphene-hemin-composite decorated with Au nanoflowers as electrochemical aptamer biosensor for the detection of K562 leukemia cancer cells. Chemistry (Weinheim an der Bergstrasse, Germany) 22 (50):18001–8. doi:10.1002/chem.201604354.
  • Liu, M., Z. Li, Y. Li, J. Chen, and Q. Yuan. 2019. Self-assembled nanozyme complexes with enhanced cascade activity and high stability for colorimetric detection of glucose. Chinese Chemical Letters 30 (5):1009–12. doi:10.1016/j.cclet.2018.12.021.
  • Liu, J., L. Jiao, L. Zhang, Z. Zheng, X. Wang, L. Lin, and S. Jiang. 2013a. Design of highly sensitive non-aggregation colorimetric sensor and its application based on inhibiting vitamin C reducing Hg2+. Sensors and Actuators B: Chemical 188:613–20. doi:10.1016/j.snb.2013.07.054.
  • Liu, X., Q. Wang, Y. Zhang, L. Zhang, Y. Su, and Y. Lv. 2013b. Colorimetric detection of glutathione in human blood serum based on the reduction of oxidized TMB. New Journal of Chemistry 37 (7):2174–8. doi:10.1039/c3nj40897c.
  • Meister, A. 1988. Glutathione metabolism and its selective modification. The Journal of Biological Chemistry 263 (33):17205–8. doi:10.1016/s0021-9258(19)77815-6.
  • Ming, W., J. Feng, S. Chang, K. Xiang, Z. Liu, B. Tian, and J. Zhang. 2017. Rhodamine-based fluorescent probes for selective detection of glutathione and cysteine. Research on Chemical Intermediates 43 (12):7387–98. doi:10.1007/s11164-017-3082-5.
  • Rajaram, R., and J. Mathiyarasu. 2018. An electrochemical sensor for homocysteine detection using gold nanoparticle incorporated reduced graphene oxide. Colloids and Surfaces B: Biointerfaces 170:109–14. doi:10.1016/j.colsurfb.2018.05.066.
  • Rossi, R., A. Milzani, I. Dalle-Donne, D. Giustarini, L. Lusini, R. Colombo, and P. D. Simplicio. 2002. Blood glutathione disulfide: In vivo factor or in vitro artifact? Clinical Chemistry 48 (5):742–53. doi:10.1093/clinchem/48.5.742.
  • Ruan, X., D. Liu, X. Niu, Y. Wang, C. D. Simpson, N. Cheng, D. Du, and Y. Lin. 2019. 2D graphene oxide/Fe-MOF nanozyme nest with superior peroxidase-like activity and its application for detection of woodsmoke exposure biomarker. Analytical Chemistry 91 (21):13847–54. doi:10.1021/acs.analchem.9b03321.
  • Saha, A., and N. R. Jana. 2013. Detection of cellular glutathione and oxidized glutathione using magnetic-plasmonic nanocomposite-based "turn-off" surface enhanced Raman scattering. Analytical Chemistry 85 (19):9221–8. doi:10.1021/ac4019457.
  • Sang, Y., F. Cao, W. Li, L. Zhang, Y. You, Q. Deng, K. Dong, J. Ren, and X. Qu. 2020. Bioinspired construction of a nanozyme-based H2O2 homeostasis disruptor for intensive chemodynamic therapy. Journal of the American Chemical Society 142 (11):5177–83. doi:10.1021/jacs.9b12873.
  • Shahrokhian, S. 2001. Lead phthalocyanine as a selective carrier for preparation of a cysteine-selective electrode. Analytical Chemistry 73 (24):5972–8. doi:10.1021/ac010541m.
  • Sri, S., D. Chauhan, G. B. V. S. Lakshmi, A. Thakar, and P. R. Solanki. 2022. MoS2 nanoflower based electrochemical biosensor for TNF alpha detection in cancer patients. Electrochimica Acta 405:139736. doi:10.1016/j.electacta.2021.139736.
  • Vacek, J., B. Klejdus, J. Petrlova, L. Lojkova, and V. Kuban. 2006. A hydrophilic interaction chromatography coupled to a mass spectrometry for the determination of glutathione in plant somatic embryos. The Analyst 131 (10):1167–74. doi:10.1039/b606432a.
  • Wang, C., Y. Gao, S. Hu, A. Zhu, Y. Ying, X. Guo, Y. Wu, Y. Wen, and H. Yang. 2022. MnO2 coated Au nanoparticles advance SERS detection of cellular glutathione. Biosensors & Bioelectronics 215:114388. doi:10.1016/j.bios.2022.114388.
  • Wang, C., J. Li, R. Tan, Q. Wang, and Z. Zhang. 2019. Colorimetric method for glucose detection with enhanced signal intensity by using ZnFe2O4-carbon nanotube-glucose oxidase composite material. The Analyst 144 (5):1831–9. doi:10.1039/c8an02330a.
  • Wang, T., Q. Bai, Z. Zhu, H. Xiao, F. Jiang, F. Du, W. W. Yu, M. Liu, and N. Sui. 2021. Graphdiyne-supported palladium-iron nanosheets: A dual-functional peroxidase mimetic nanozyme for glutathione detection and antibacterial application. Chemical Engineering Journal 413:127537. doi:10.1016/j.cej.2020.127537.
  • Wei, C., X. Liu, Y. Gao, Y. Wu, X. Guo, Y. Ying, Y. Wen, and H. Yang. 2018. Thiol-disulfide exchange reaction for cellular glutathione detection with surface-enhanced raman scattering. Analytical Chemistry 90 (19):11333–9. doi:10.1021/acs.analchem.8b01974.
  • Wei, Y., H. Jiang, and P. Deng. 2021. Direct quantification of cysteine and glutathione by 1H NMR based on β-cyclodextrin modified silver nanoparticles. Microchemical Journal 168:106471. doi:10.1016/j.microc.2021.106471.
  • Wu, J., Z. Wang, X. Jin, S. Zhang, T. Li, Y. Zhang, H. Xing, Y. Yu, H. Zhang, X. Gao, et al. 2021. Hammett relationship in oxidase-mimicking metal-organic frameworks revealed through a protein-engineering-inspired strategy. Advanced Materials (Deerfield Beach, Fla.) 33 (3):e2005024. doi:10.1002/adma.202005024.
  • Xian, Z., L. Zhang, Y. Yu, B. Lin, Y. Wang, M. Guo, and Y. Cao. 2021. Nanozyme based on CoFe2O4 modified with MoS2 for colorimetric determination of cysteine and glutathione. Microchimica Acta 188 (3):65. doi:10.1007/s00604-021-04702-7.
  • Xianyu, Y., Y. Xie, N. Wang, Z. Wang, and X. Jiang. 2015. A dispersion-dominated chromogenic strategy for colorimetric sensing of glutathione at the nanomolar level using gold nanoparticles. Small (Weinheim an der Bergstrasse, Germany) 11 (41):5510–4. doi:10.1002/smll.201500903.
  • Zhong, Q., Y. Chen, A. Su, and Y. Wang. 2018. Synthesis of catalytically active carbon quantum dots and its application for colorimetric detection of glutathione. Sensors and Actuators B: Chemical 273:1098–102. doi:10.1016/j.snb.2018.07.026.
  • Zhou, Y., B. Zheng, L. Lang, G. Liu, and X. Xia. 2022. Bioinspired fabrication of two-dimensional metal-organic framework-based nanozyme for sensitive colorimetric detection of glutathione. ACS Applied Nano Materials 5 (12):18761–9. doi:10.1021/acsanm.2c04533.
  • Zhou, Y., Y. Wei, J. Ren, and X. Qu. 2020a. A chiral covalent organic framework (COF) nanozyme with ultrahigh enzymatic activity. Materials Horizons 7 (12):3291–7. doi:10.1039/D0MH01535K.
  • Zhou, N., Y. Shi, C. Sun, X. Zhang, and W. Zhao. 2020b. Carbon quantum dot-AgOH colloid fluorescent probe for selective detection of biothiols based on the inner filter effect. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 228:117847. doi:10.1016/j.saa.2019.117847.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.