148
Views
0
CrossRef citations to date
0
Altmetric
Voltammetry

Electrochemical Determination of Iron(III) in River Water by Differential Pulse Voltammetry (DPV) Using a Poly(3,4-Ethylenedioxythiophene)–Polystyrene Sulfonate co-Polymer/Gold Nanoparticle Modified Gold Microelectrode

, , , , , & show all
Pages 1448-1461 | Received 15 Jun 2023, Accepted 21 Aug 2023, Published online: 25 Aug 2023

References

  • Ali, T. A., W. H. Mahmoud, and G. G. Mohamed. 2019. Construction and characterization of nano iron complex ionophore for electrochemical determination of Fe(III) in pure and various real water samples. Applied Organometallic Chemistry 33 (11):e5206–23. doi:10.1002/aoc.5206.
  • Ali, T. A., A. A. Farag, and G. G. Mohamed. 2014. Potentiometric determination of iron in polluted water samples using new modified Fe(III)-screen printed ion selective electrode. Journal of Industrial and Engineering Chemistry 20 (4):2394–400. doi:10.1016/j.jiec.2013.10.019.
  • Amiripour, F., S. N. Azizi, and S. Ghasemi. 2018. Gold-copper bimetallic nanoparticles supported onnano P zeolite modified carbon paste electrode as an efficient electrocatalyst and sensitive sensor for determination of hydrazine. Biosensors & Bioelectronics 107:111–7. doi:10.1016/j.bios.2018.02.016.
  • Chen, S. L., Y. J. Huang, Y. Yang, F. H. Luo, Q. H. Zhao, and G. H. Chen. 2021. Ultrasensitive Fe3+ ion detection based onpH-insensitive fluorescent graphene nanoparticle sensors in strong acid and neutral media. New Journal of Chemistry 45 (13):5829–36. doi:10.1039/D0NJ06201D.
  • Colter, A., and R. L. Mahler. 2006. Iron in drinking water. Environmental Protection 2:3–6. doi: http://www.idph.state.il.us/envhealth/factsheets/ironFS.htm.
  • Doan, V. D., T. L. Phan, V. T. Le, Y. Vasseghian, L. O. Evgenievna, D. L. Tran, and V. T. Le. 2022. Efficient and fast degradation of 4-nitrophenol and detection of Fe(III) ions by Poria cocos extract stabilized silver nanoparticles. Chemosphere 286 (Pt 3):131894. doi:10.1016/j.chemosphere.2021.131894.
  • Dong, P., B. Jiang, and J. B. Zheng. 2019. A novel acetylcholinesterase biosensor based on gold nanoparticles obtained by electroless plating on three-dimensional graphene for detecting organophosphorus pesticides in water and vegetable samples. Analytical Methods 11 (18):2428–34. doi:10.1039/C9AY00549H.
  • Gao, X. H., Y. Lu, S. He, X. Li, and W. Chen. 2015. Colorimetric detection of iron ions (III) based on the highly sensitive plasmonic response of the N-acetyl-L-cysteine-stabilized silver nanoparticle particles. Analytica Chimica Acta 879:118–25. doi:10.1016/j.aca.2015.04.002.
  • Gualandi, I., D. Tonelli, F. Mariani, E. Scavetta, M. Marzocchi, and B. Fraboni. 2016. Selective detection of dopamine with an all PEDOT: PSS organic electrochemical transistor. Scientific Reports 6 (1):35419–25. doi:10.1038/srep35419.
  • Han, H. T., D. W. Pan, F. Pan, X. P. Hu, and R. L. Zhu. 2021. A functional micro-needle sensor for voltammetric determination of iron in coastal waters. Sensors and Actuators B 327:128883–91. doi:10.1016/j.snb.2020.128883.
  • Kaplan, C. D., and J. Kaplan. 2009. Iron acquisition and transcriptional regulation. Chemical Reviews 109 (10):4536–52. doi:10.1021/cr9001676.
  • Kaur, S. B., A. Shiekh, D. Kaur, and I. Kaur. 2021. Highly sensitive sensing of Fe(III) harnessing Schiff based ionophore: An electrochemical approach supported with spectroscopic and DFT studies. Journal of Molecular Liquids 333:115954–65. doi:10.1016/j.molliq.2021.115954.
  • Kim, H. J., K. Y. Cho, S. S. Hwang, D. H. Choi, M. J. Ko, and K. Y. Baek. 2016. Controlled synthesis of multi-armed P3HT star polymers with gold nanoparticle core. RSC Advances 6 (54):49206–13. doi:10.1039/C6RA06926F.
  • Lee, J. H., B. S. Park, H. G. Ghang, H. Song, and S. Y. Yang. 2018. Nano-protrusive gold nanoparticle-hybridized polymer thin film as a sensitive, multipatternable, and antifouling biosensor platform. ACS Applied Materials & Interfaces 10 (16):13397–405. doi:10.1021/acsami.8b03681.
  • Ma, S., D. W. Pan, H. Wei, N. Wang, F. Pan, and Q. Kang. 2019. In-situ fabrication of reduced graphene oxide/leucomethylene blue/platinum nanoparticles modified electrode for voltammetric determination of trace Fe (II) in seawater. Microchemical Journal 151:104210–8. doi:10.1016/j.microc.2019.104210.
  • Mashhadizadeh, M. H., and R. P. Talemi. 2016. Synergistic effect of magnetite and gold nanoparticles onto the response of a label-free impedimetric hepatitis B virus DNA biosensor. Materials Science & Engineering. C, Materials for Biological Applications 59:773–81. doi:10.1016/j.msec.2015.10.082.
  • Oliveira Farias, E. A., S. S. Nogueira, A. M. Oliveira Farias, M. S. Oliveira, M. F. Cardoso Soares, H. N. Cunha, J. R. Santos Junior, D. A. Silva, P. Eaton, and C. Eiras. 2017. A thin PANI and carrageenan–gold nanoparticle film on a flexible gold electrode as a conductive and low cost platform for sensing in a physiological environment. Journal of Materials Science 52 (23):13365–77. doi:10.1007/s10853-017-1438-2.
  • Ouyang, J., Q. Xu, C. W. Chu, Y. Yang, G. Li, and J. Shinar. 2004. On the mechanism of conductivity enhancement poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) film through solvent treatment. Polymer 45 (25):8443–50. doi:10.1016/j.polymer.2004.10.001.
  • Paradowska, E., K. Arkusz, and D. G. Pijanowska. 2020. Comparison of gold nanoparticles deposition methods and their influence on electrochemical and adsorption properties of titanium dioxide nanotubes. Materials (Basel, Switzerland) 13 (19):4269–89. doi:10.3390/ma13194269.
  • Pesterfield, L. L., J. B. Maddox, M. S. Crocker, and G. K. Schweitzer. 2012. Pourbaix (E − pH-M) diagrams in three dimensions. Journal of Chemical Education 89 (7):891–9. doi:10.1021/ed200423n.
  • Putra, B. R., U. Nisa, R. Heryanto, E. Rohaeti, M. Khalil, A. Izzataddini, and W. T. Wahyuni. 2022. A facile electrochemical sensor based on a composite of electrochemically reduced graphene oxide and a PEDOT:PSS modified glassy carbon electrode for uric acid detection. Analytical Sciences: The International Journal of the Japan Society for Analytical Chemistry 38 (1):157–66. doi:10.2116/analsci.21P214.
  • Ramanavicius, A., P. Genys, and A. Ramanaviciene. 2014. Electrochemical impedance spectroscopy based evaluation of 1,10-phenanthroline-5,6-dione and glucose oxidase modified graphite electrode. Electrochimica Acta 146:659–65. doi:10.1016/j.electacta.2014.08.130.
  • Ramanavicius, A., A. Finkelsteinas, H. Cesiulis, and A. Ramanaviciene. 2010. Electrochemical impedance spectroscopy of polypyrrole based electrochemical immunosensor. Bioelectrochemistry (Amsterdam, Netherlands) 79 (1):11–6. doi:10.1016/j.bioelechem.2009.09.013.
  • Rasin, P., M. M. Mathew, V. Manakkadan, V. Namboothiri, V. Palakkeezhillam, and A. Sreekanth. 2022. A highly fluorescent pyrene‑based sensor for selective detection of Fe3+ ion in aqueous medium: Computational investigations. Journal of Fluorescence 32 (3):1229–38. doi:10.1007/s10895-022-02940-3.
  • Salsamendi, M., R. Marcilla, M. Döbbelin, D. Mecerreyes, C. Pozo-Gonzalo, J. A. Pomposo, and R. Pacios. 2008. Simultaneous synthesis of gold nanoparticles and conducting poly(3,4-ethylenedioxythiophene) towards optoelectronic nanocomposites. Physica Status Solidi (a) 205 (6):1451–4. doi:10.1002/pssa.200778167.
  • Samerjai, W., P. Jittangprasert, and P. Tongraung. 2020. Colorimetric detection of iron(III) ion based on 4-aminothiophenol and Schiff base naphthalene-2-ol (L) modified silver nanoparticle particles. Asian Journal of Chemistry 32 (2):287–92. doi:10.14233/ajchem.2020.22301.
  • Shikama, K. 1998. The molecular mechanism of autoxidation for myoglobin and hemoglobin: A venerable puzzle. Chemical Reviews 98 (4):1357–74. doi:10.1021/cr970042e.
  • Tao, W. Y., D. W. Pan, Y. J. Liu, L. H. Nie, and S. Z. Yao. 2005. An amperometric hydrogen peroxide sensor based on immobilization of hemoglobin in poly(o-aminophenol) film at iron–cobalt hexacyanoferrate-modified gold electrode. Analytical Biochemistry 338 (2):332–40. doi:10.1016/j.ab.2004.12.009.
  • Tripathy, S. K., J. Woo, and C.-S. Han. 2013. Colorimetric detection of Fe(III) ions using label-free gold nanoparticles and acidic thiourea mixture. Sensors and Actuators B: Chemical 181:114–8. doi:10.1016/j.snb.2013.01.058.
  • Wang, L., D. D. Ye, W. X. Li, Y. Y. Liu, L. H. Li, W. L. Zhang, and L. Ni. 2017. Fluorescent and colorimetric detection of Fe(III) and Cu(II) by a difunctional rhodamine-based probe. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 183:291–7. doi:10.1016/j.saa.2017.04.056.
  • Wu, S. P., Y. P. Chen, and Y. M. Sung. 2011. Colorimetric detection of Fe3+ ions using pyrophosphate functionalized AuNPs particles. The Analyst 136 (9):1887–91. doi:10.1039/c1an15028f.
  • Wu, F., J. R. Liu, L. Li, X. X. Zhang, R. Luo, Y. S. Ye, and R. J. Chen. 2016. Surface modification of Li-rich cathode materials for lithium-ion batteries with PEDOT:PSS conducting polymer. ACS Applied Materials & Interfaces 8 (35):23095–104. doi:10.1021/acsami.6b07431.
  • Xu, H. B., S. H. Zhou, L. L. Xiao, H. H. Wang, S. Z. Li, and Q. H. Yuan. 2015. Fabrication of a nitrogen-doped graphene quantum dot from MOF-derived porous carbon and its application for highly selective fluorescence detection of Fe3+. Journal of Materials Chemistry C 3 (2):291–7. doi:10.1039/C4TC01991A.
  • Yan, R. H., Z. Z. Guo, X. F. Chen, L. H. Tang, M. Y. Wang, and P. Miao. 2021. Red-emissive carbon nanodots for highly sensitive ferric(III) ion sensing and intracellular imaging. The Analyst 146 (21):6450–4. doi:10.1039/D1AN01451J.
  • Yücel, M., S. Sevgen, and N. Le Bris. 2021. Soluble, colloidal, and particulate iron across the hydrothermal vent mixing zones in broken spur and rainbow, mid-atlantic ridge. Frontiers in Microbiology 12:631885. doi:10.3389/fmicb.2021.631885.
  • Zykwinska, A., W. Domagala, and M. Lapkowski. 2003. ESR spectroelectrochemistry of poly(3,4-ethylenedioxythiophene) (PEDOT). Electrochemistry Communications 5 (7):603–8. doi:10.1016/S1388-2481(03)00132-2.
  • Zhu, Z. Y., C. C. Liu, J. K. Xu, Q. L. Jiang, H. Shi, and E. Liu. 2016. Improving the electrical conductivity of PEDOT:PSS films by binary secondary doping. Electronic Materials Letters 12 (1):54–8. doi:10.1007/s13391-015-5272-x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.