96
Views
0
CrossRef citations to date
0
Altmetric
Electrochemistry

Electrochemical Determination of Tyrosine by a Silver Nanoparticle – Hollow Carbon Sphere Modified Glassy Carbon Electrode (GCE)

, , , , &
Pages 1485-1497 | Received 15 May 2023, Accepted 31 Aug 2023, Published online: 06 Sep 2023

References

  • Braal, C. L., G. Veerman, R. Peric, J. Aerts, R. Mathijssen, S. Koolen, and P. D. Bruijn. 2019. Quantification of the tyrosine kinase inhibitor erlotinib in human scalp hair by liquid chromatography-tandem mass spectrometry: Pitfalls for clinical application. Journal of Pharmaceutical and Biomedical Analysis 172:175–82. doi: 10.1016/j.jpba.2019.04.031.
  • Chen, Y. M., G. X. Zhang, J. Y. Zhang, H. B. Guo, X. Feng, and Y. G. Chen. 2018. Synthesis of porous carbon spheres derived from lignin through a facile method for high performance supercapacitors. Journal of Materials Science & Technology 34 (11):2189–96. doi: 10.1016/j.jmst.2018.03.010.
  • Deshmukh, A. A., S. D. Mhlanga, and N. J. Coville. 2010. Carbon spheres. Materials Science and Engineering R 70 (1–2):1–28. doi: 10.1016/j.mser.2010.06.017.
  • Donaldson, J. M., and H. C. Samuel. 1946. The treatment of tuberculous empyemas with tyrothricin. Diseases of the Chest 12 (1):61–7. doi: 10.1378/chest.12.1.61.
  • Du, J., Y. Zhang, H. X. Wu, S. L. Hou, and A. B. Chen. 2020. N-doped hollow mesoporous carbon spheres by improved dissolution-capture for supercapacitor. Carbon 156:523–8. doi: 10.1016/j.carbon.2019.09.091.
  • Fan, Y., J. H. Liu, H. T. Lu, and Q. Zhang. 2011. Electrochemistry and voltammetric determination of L-tryptophan and L-tyrosine using a glassy carbon electrode modified with a Nafion/TiO2-graphene composite film. Microchimica Acta 173 (1–2):241–7. doi: 10.1007/s00604-011-0556-9.
  • Feng, X. C., C. Y. Li, N. Ullah, R. M. Hackman, L. Chen, and G. H. Zhou. 2015. Potential biomarker of myofibrillar protein oxidation in raw and cooked ham: 3-nitrotyrosine formed by nitrosation. Journal of Agricultural and Food Chemistry 63 (51):10957–64. doi: 10.1021/acs.jafc.5b04107.
  • Ghimire, P., C. Gunathilake, N. P. Wickramaratne, and M. Jaroniec. 2017. Tetraethyl orthosilicate-assisted synthesis of nitrogen-containing porous carbon spheres. Carbon 121:408–17. doi: 10.1016/j.carbon.2017.06.007.
  • Guan, H. J., Y. Liu, Z. J. Bai, J. Zhang, S. G. Yuan, and B. Zhang. 2018. Ag nanoparticles embedded in N-doped carbon nanofibers: A superior electrocatalyst for hydrogen peroxide detection. Materials Chemistry and Physics 213:335–42. doi: 10.1016/j.matchemphys.2018.04.002.
  • Gu, W. X., M. M. Wang, X. Q. Mao, Y. R. Wang, L. Li, and W. S. Xia. 2015. A facile sensitive L-tyrosine electrochemical sensor based on coupled CuO/Cu2O nanoparticles and multi-walled carbon nanotubes nanocomposite film. Analytical Methods 7 (4):1313–20. doi: 10.1039/C4AY01925C.
  • Ipson, B. R., and A. L. Fisher. 2016. Roles of the tyrosine isomers meta-tyrosine and ortho-tyrosine in oxidative stress. Ageing Research Reviews 27:93–107. doi: 10.1016/j.arr.2016.03.005.
  • Ipson, B. R., R. A. Green, J. T. Wilson, J. N. Watson, K. F. Faull, and A. L. Fisher. 2019. Tyrosine aminotransferase is involved in the oxidative stress response by metabolizing meta-tyrosine in caenorhabditis elegans. Journal of Biological Chemistry 294 (24):9536–54. doi: 10.1074/jbc.ra118.004426.
  • Jin, G. P., X. Peng, and Q. Z. Chen. 2008. Preparation of novel arrays silver nanoparticles modified polyrutin coat-paraffin-impregnated graphite electrode for tyrosine and tryptophan’s oxidation. Electroanalysis 20 (8):907–15. doi: 10.1002/elan.200704084.
  • Jongkees, B. J., H. Bernhard, S. Kühn, and S. C. Lorenza. 2015. Effect of tyrosine supplementation on clinical and healthy populations under stress or cognitive demands—A review. Journal of Psychiatric Research 70:50–7. doi: 10.1016/j.jpsychires.2015.08.014.
  • Kazici, H. C., F. Salman, A. Caglar, H. Kivrak, and N. Aktas. 2018. Synthesis, characterization, and voltammetric hydrogen peroxide sensing on novel monometallic (Ag, Co/MWCNT) and bimetallic (AgCo/MWCNT) alloy nanoparticles. Fullerenes, Nanotubes and Carbon Nanostructures 26 (3):145–51. doi: 10.1080/1536383X.2017.1420061.
  • Kuchenreuther, J. M., W. K. Myers, T. A. Stich, S. J. George, Y. Nejatyjahromy, J. R. Swartz, and R. D. Britt. 2013. A radical intermediate in tyrosine scission to the CO and CN- ligands of FeFe hydrogenase. Science (New York, N.Y.) 342 (6157):472–5. doi: 10.1126/science.1241859.
  • Li, B. W., Y. H. Yang, Y. Y. Ding, Y. T. Ge, Y. C. Xu, Y. L. Xie, Y. H. Shi, and G. W. Le. 2023. Dityrosine in food: A review of its occurrence, health effects, detection methods, and mitigation strategies. Comprehensive Reviews in Food Science and Food Safety 22 (1):355–79. doi: 10.1111/1541-4337.13071.
  • Li, Y., M. Yao, T. T. Li, Y. Y. Song, Y. J. Zhang, and S. Q. Liu. 2013. Simultaneous electrochemical determination of uric acid and dopamine in the presence of ascorbic acid using nitrogen-doped carbon hollow spheres. Analytical Methods 5 (15):3635–8. doi: 10.1039/c3ay40565f.
  • Liu, M., Q. Guan, and S. T. Liu. 2018. Nitrogen-doped hollow carbon spheres for electrochemical detection of heavy metal ions. Ionics 24 (9):2783–93. doi: 10.1007/s11581-017-2390-5.
  • Liu, P. G., W. F. Liu, Y. P. Huang, P. L. Li, J. Yan, and K. Y. Liu. 2020. Mesoporous hollow carbon spheres boosted, integrated high performance aqueous Zn-ion energy storage. Energy Storage Materials 25:858–65. doi: 10.1016/j.ensm.2019.09.004.
  • Lu, Y. P., S. H. Ma, X. Tang, B. W. Li, Y. T. Ge, K. Zhang, S. J. Yang, Q. Zhao, Y. Xu, and H. Y. Ren. 2020. Dietary dityrosine induces mitochondrial dysfunction by diminished thyroid hormone function in mouse myocardia. Journal of Agricultural and Food Chemistry 68 (34):9223–34. doi: 10.1021/acs.jafc.0c03926.
  • Luckose, F., M. C. Pandey, and K. Radhakrishna. 2015. Effects of amino acid derivatives on physical, mental, and physiological activities. Critical Reviews in Food Science and Nutrition 55 (13):1793–807. doi: 10.1080/10408398.2012.708368.
  • Ma, X. Q., K. Lu, K. Tang, and W. X. Zhao. 2021. Construction of electrocatalyst based on in-situ growth silver nanoparticles into hollow porous carbon spheres for hydrogen peroxide detection. Microchemical Journal 170:106713. doi: 10.1016/j.microc.2021.106713.
  • Ma, P., H. Zhu, J. Wei, and M. Zhang. 2015. Facile fabrication of Au nanoparticles immobilized on polyaniline nanofibers: High sensitive nonenzymatic hydrogen peroxide sensor. Nanoscience and Nanotechnology Letters 7 (2):127–33. doi: 10.1166/nnl.2015.1906.
  • Mallozzi, C., A. Crestini, C. D'Amore, P. Piscopo, M. Cappella, F. Perrone, G. Talarico, G. Bruno, N. Vanacore, and A. Confaloni. 2020. Activation of tyrosine phosphorylation signaling in erythrocytes of patients with Alzheimer’s disease. Neuroscience 433:36–41. doi: 10.1016/j.neuroscience.2020.02.050.
  • Nagatsu, T., A. Nakashima, H. Ichinose, and K. Kobayashi. 2019. Human tyrosine hydroxylase in Parkinson’s disease and in related disorders. Journal of Neural Transmission (Vienna, Austria: 1996) 126 (4):397–409. doi: 10.1007/s00702-018-1903-3.
  • Negut, C. C., and R. S. Staden. 2021. Review—Recent trends in supramolecular recognition of dopamine, tyrosine, and tryptophan, using electrochemical sensors. Journal of the Electrochemical Society 168 (6):067517. doi: 10.1149/1945-7111/ac0a22.
  • Poustie, V. J., and P. Rutherford. 2000. Tyrosine supplementation for phenylketonuria. Cochrane Database of Systematic Reviews (2):CD001507. doi: 10.1002/14651858.CD001507.
  • Qin, W. L., X. L. Li, Y. C. Zhang, L. Han, Z. J. Cheng, Z. J. Li, and Y. Xu. 2022. Rational design of ag nanoparticles on ZIF-67-functionalized carbon nanotube for enzymeless glucose detection and electrocatalytic water oxidation. Journal of Alloys and Compounds 910:164878. doi: 10.1016/j.jallcom.2022.164878.
  • Rahman, M. M., N. S. Lopa, K. Kim, and J. J. Lee. 2015. Selective detection of L-tyrosine in the presence of ascorbic acid, dopamine, and uric acid at poly (thionine)-modified glassy carbon electrode. Journal of Electroanalytical Chemistry 754:87–93. doi: 10.1016/j.jelechem.2015.06.018.
  • Saidu, F. K., A. Joseph, E. V. Varghese, and G. V. Thomas. 2020. Silver nanoparticles-embedded poly(1-naphthylamine) nanospheres for low-cost non-enzymatic electrochemical H2O2 sensor. Polymer Bulletin 77 (11):5825–46. doi: 10.1007/s00289-019-03053-x.
  • Shang, M. G., J. Zhang, X. C. Liu, Y. Liu, S. P. Guo, S. M. Yu, S. Filatov, and X. B. Yi. 2021. N, S self-doped hollow-sphere porous carbon derived from puffball spores for high performance supercapacitors. Applied Surface Science 542:148697. doi: 10.1016/j.apsusc.2020.148697.
  • Stopfer, L. E., C. T. Flower, A. S. Gajadhar, B. Patel, S. Gallien, D. Lopez-Ferrer, and F. M. White. 2021. High density, targeted monitoring of tyrosine phosphorylation reveals activated signaling networks in human tumors. Cancer Research 81 (9):2495–509. doi: 10.1158/0008-5472.can-20-3804.
  • Tao, L., L. Y. Zhang, B. Chen, and J. G. Yu. 2019. Hollow carbon spheres and their hybrid nanomaterials in electrochemical energy storage. Advanced Energy Materials 9 (17):1803900. doi: 10.1002/aenm.201803900.
  • Varmira, K., G. Mohammadi, M. Mahmoudi, R. Khodarahmi, K. Rashidi, M. Hedayati, H. C. Goicoechea, and A. R. Jalalvand. 2018. Fabrication of a novel enzymatic electrochemical biosensor for determination of tyrosine in some food samples. Talanta 183:1–10. doi: 10.1016/j.talanta.2018.02.053.
  • Vrshek-Schallhorn, S., D. Wahlstrom, T. White, and M. Luciana. 2013. The effect of acute tyrosine phenylalanine depletion on emotion-based decision-making in healthy adults. Pharmacology, Biochemistry, and Behavior 105:51–7. doi: 10.1016/j.pbb.2013.01.013.
  • Wang, F., Y. Qing, and Y. X. Ci. 1992. Spectrofluorimetric determination of the substrates based on the fluorescence formation with the peroxidase-like conjugates of hemie with proteins. Analytical Letters 25 (8):1469–78. doi: 10.1080/00032719208017129.
  • Wu, Y. Y., P. H. Deng, Y. L. Tian, Z. Y. Ding, G. L. Li, J. Liu, Z. Zuberi, and Q. G. He. 2020. Rapid recognition and determination of tryptophan by carbon nanotubes and molecularly imprinted polymer-modified glassy carbon electrode. Bioelectrochemistry (Amsterdam, Netherlands) 131:107393. doi: 10.1016/j.bioelechem.2019.107393.
  • Xu, Q., and S. F. Wang. 2005. Electrocatalytic oxidation and direct determination of L-tyrosine by square wave voltammetry at multi-wall carbon nanotubes modified glassy carbon electrodes. Microchimica Acta 151 (1–2):47–52. doi: 10.1007/s00604-005-0408-6.
  • Zheng, F., J. Zhou, C. Wang, W. Hu, and B. Krischek. 2021. There may be no significant increase of cerebrospinal fluid tyrosine levels in patients with Parkinson’s disease. European Journal of Neurology 28 (2):e15-16–e16. doi: 10.1111/ene.14570.
  • Zhou, M., Y. Lu, H. M. Chen, X. X. Ju, and F. Xiang. 2018. Excellent durable supercapacitor performance of hierarchical porous carbon spheres with macro hollow cores. Journal of Energy Storage 19:35–40. doi: 10.1016/j.est.2018.07.007.
  • Zou, J., D. P. Mao, A. T. S. Wee, and J. Z. Jiang. 2019. Micro/nano-structured ultrathin g-C3N4/Ag nanoparticle hybrids as efficient electrochemical biosensors for L-tyrosine. Applied Surface Science 467–468:608–18. doi: 10.1016/j.apsusc.2018.10.187.
  • Zribi, R., R. Maalej, E. Messina, R. Gillibert, M. G. Donato, O. M. Maragò, P. G. Gucciardi, S. G. Leonardi, and G. Neri. 2020. Exfoliated 2D-MoS2 nanosheets on carbon and gold screen printed electrodes for enzyme-free electrochemical sensing of tyrosine. Sensors and Actuators B: Chemical 303:127229. doi: 10.1016/j.snb.2019.127229.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.