68
Views
0
CrossRef citations to date
0
Altmetric
Industrial Analysis

Enhanced Accuracy for the Determination of Chromium in Steel by Laser-Induced Breakdown Spectroscopy (LIBS) and Extreme Random Tree (ERT)

, , , , , , & show all
Pages 1829-1840 | Received 24 Aug 2023, Accepted 26 Oct 2023, Published online: 03 Nov 2023

References

  • Butcher, D. J. 2016. Atomic fluorescence spectrometry: A review of advances in instrumentation and novel applications. Applied Spectroscopy Reviews 51 (5):397–416. doi: 10.1080/05704928.2016.1141099.
  • Berlo, K., W. Xia, F. Zwillich, E. Gibbons, R. Gaudiuso, E. Ewusi-Annan, G. R. Chiklis, and N. Melikechi. 2022. Laser induced breakdown spectroscopy for the rapid detection of SARS-CoV-2 immune response in plasma. Scientific Reports 12 (1):1614. doi: 10.1038/s41598-022-05509-z.
  • Burylin, M. Y., and A. A. Pupyshev. 2017. Development of electrothermal atomic absorption spectrometry in 2005–2016. Journal of Analytical Chemistry 72 (9):935–946. doi: 10.1134/S1061934817090039.
  • Chan, A. P. C., Y. Yang, and Y. Gao. 2018. Factors affecting the market development of steel construction. Engineering, Construction and Architectural Management 25 (9):1146–69. doi: 10.1108/ECAM-06-2017-0095.
  • Feng, T., X. Zhang, M. G. Li, T. T. Chen, L. Jiao, Y. Y. Xu, H. S. Tang, T. L. Zhang, and H. Li. 2021. Pollution risk estimation of the cu element in atmospheric sedimentation samples by laser induced breakdown spectroscopy (LIBS) combined with random forest (RF). Analytical Methods: Advancing Methods and Applications 13 (30):3424–32. doi: 10.1039/d1ay00879j.
  • Gazeli, O., D. Stefas, and S. Couris. 2021. Sulfur detection in soil by laser induced breakdown spectroscopy assisted by multivariate analysis. Materials 14 (3):541. doi: 10.3390/ma14030541.
  • Geurts, P., D. Ernst, and L. Wehenkel. 2006. Extremely randomized trees. Machine Learning 63 (1):3–42. doi: 10.1007/s10994-006-6226-1.
  • Kalam, S. A., E. N. Rao, S. Hamad, B. Chandu, and S. V. Rao. 2018. Femtosecond laser induced breakdown spectroscopy based standoff detection of explosives and discrimination using principal component analysis. Optics Express 26 (7):8069–83.
  • Kim, H., S. H. Nam, S. H. Han, S. Jung, and Y. Lee. 2019. Laser-induced breakdown spectroscopy analysis of alloying elements in steel: Partial least squares modeling based on the low-resolution spectra and their first derivatives. Optics & Laser Technology 112:117–25. doi: 10.1016/j.optlastec.2018.11.002.
  • Li, D. L., X. J. Shen, H. O. Yang, Z. X. Liu, L. Zhao, and H. Z. Wang. 2021. Quantitative distribution characterization of gradient composition of additive-manufactured stainless steel using micro-beam X-ray fluorescence. Spectrochimica Acta Part B: Atomic Spectroscopy 183:106268. doi: 10.1016/j.sab.2021.106268.
  • Medvedev, N. S., N. N. Gavrilyukov, V. F. Kukarin, and A. I. Saprykin. 2013. Use of tandem calibration for analyzing steels and alloys by inductively coupled plasma atomic emission spectrometry. Journal of Analytical Chemistry 68 (7):616–24. doi: 10.1134/S1061934813070095.
  • Schwarz, G., V. Picotti, D. Bleiner, and A. Gundlach-Graham. 2020. Incorporating a student-centered approach with collaborative learning into methods in quantitative element analysis. Journal of Chemical Education 97 (10):3617–23. doi: 10.1021/acs.jchemed.0c00052.
  • Shah, S. K. H., J. Iqbal, P. Ahmad, M. U. Khandaker, S. Haq, and M. Naeem. 2020. Laser induced breakdown spectroscopy methods and applications: A comprehensive review. Radiation Physics and Chemistry 170:108666. doi: 10.1016/j.radphyschem.2019.108666.
  • Speer, J. G. 2018. 2017 Bessemer lecture: Progress in steel product research to advance the industry and society. Ironmaking & Steelmaking 45 (10):858–66. doi: 10.1080/03019233.2018.1543605.
  • Wang, X., J. Wang, Z. Gao, D. H. Xia, and W. Hu. 2019. Tempering effects on the microstructure and properties of submerged arc surfacing layers of H13 steel. Journal of Materials Processing Technology 269:26–34. doi: 10.1016/j.jmatprotec.2019.01.024.
  • Wang, Z. Z., Y. Deguchi, Z. Z. Zhang, Z. Wang, X. Y. Zeng, and J. J. Yan. 2016. Laser-induced breakdown spectroscopy in Asia. Frontiers of Physics 11 (6):1–25. doi: 10.1007/s11467-016-0607-0.
  • Wang, Z., Y. Deguchi, F. Shiou, J. Yan, and J. Liu. 2016. Application of laser-induced breakdown spectroscopy to real-time elemental monitoring of iron and steel making processes. ISIJ International 56 (5):723–35. doi: 10.2355/isijinternational.ISIJINT-2015-542.
  • Wu, J., H. Yu, Y. Qiu, Z. Zhang, T. Liu, F. Xue, W. Yu, X. Li, and A. Qiu. 2019. Plasma characteristics and element analysis of steels from a nuclear power plant based on fiber-optic laser-induced breakdown spectroscopy. Journal of Physics D: Applied Physics 52 (1):014006. doi: 10.1088/1361-6463/aae7b4.
  • Zhang, T. L., L. Liang, K. Wang, H. S. Tang, X. F. Yang, Y. X. Duan, and H. Li. 2014. A novel approach for the quantitative analysis of multiple elements in steel based on laser-induced breakdown spectroscopy (LIBS) and random forest regression (RFR). Journal of Analytical Atomic Spectrometry 29 (12):2323–9. doi: 10.1039/C4JA00217B.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.