147
Views
0
CrossRef citations to date
0
Altmetric
Bioanalytical

Ultrafast Electrochemical Sensor Based on Electrical Potential-Assisted Hybridization for Non-Amplification Determination of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) by Differential Pulse Voltammetry (DPV)

, , , , , , & show all
Pages 1876-1891 | Received 03 Oct 2023, Accepted 31 Oct 2023, Published online: 08 Nov 2023

References

  • Beck, E. T., and K. J. Henrickson. 2010. Molecular diagnosis of respiratory viruses. Future Microbiology 5 (6):901–16. doi:10.2217/fmb.10.48.
  • Bender, A. T., M. D. Borysiak, A. M. Levenson, L. Lillis, D. S. Boyle, and J. D. Posner. 2018. Semiquantitative nucleic acid test with simultaneous isotachophoretic extraction and amplification. Analytical Chemistry 90 (12):7221–9. doi:10.1021/acs.analchem.8b00185.
  • Brandolini, M., F. Taddei, M. M. Marino, L. Grumiro, A. Scalcione, M. E. Turba, F. Gentilini, M. Fantini, S. Zannoli, G. Dirani, et al. 2021. Correlating qRT-PCR, dPCR and viral titration for the identification and quantification of SARS-CoV-2: A new approach for infection management. Viruses 13 (6):1022. doi:10.3390/v13061022.
  • Edman, C. F., D. E. Raymond, D. J. Wu, E. Tu, R. G. Sosnowski, W. F. Butler, M. Nerenberg, and M. J. Heller. 1997. Electric field directed nucleic acid hybridization on microchips. Nucleic Acids Research 25 (24):4907–14. doi:10.1093/nar/25.24.4907.
  • Fixe, F., H. M. Branz, N. Louro, V. Chu, D. M. F. Prazeres, and J. P. Conde. 2004. Immobilization and hybridization by single sub-millisecond electric field pulses, for pixel-addressed DNA microarrays. Biosensors & Bioelectronics 19 (12):1591–7. doi:10.1016/j.bios.2003.12.012.
  • Fogang, S. G., G. Deffo, L. S. Guenang, R. C. T. Temgoua, E. Njanja, I. K. Tonle, A. Bhaumik, and E. Ngameni. 2023. Nafion/multiwalled carbon nanotubes/mesoporous silica composite modified glassy carbon electrode for the simultaneous electrochemical determination of indigo carmine and carbendazim by differential pulse voltammetry. Analytical Letters 1–16. doi:10.1080/00032719.2023.2245083.
  • Fortunati, S., A. Rozzi, F. Curti, M. Giannetto, R. Corradini, and M. Careri. 2019. Novel amperometric genosensor based on peptide nucleic acid (PNA) probes immobilized on carbon nanotubes-screen printed electrodes for the determination of trace levels of non-amplified DNA in genetically modified (GM) soy. Biosensors & Bioelectronics 129:7–14. doi:10.1016/j.bios.2019.01.020.
  • Gebala, M., and W. Schuhmann. 2010. Controlled orientation of DNA in a binary SAM as a key for the successful determination of DNA hybridization by means of electrochemical impedance spectroscopy. Chemphyschem: A European Journal of Chemical Physics and Physical Chemistry 11 (13):2887–95. doi:10.1002/cphc.201000210.
  • Hao, J., Z. B. Wang, Y. F. Li, Y. R. Deng, Y. R. Fan, and Y. Huang. 2023. A novel signal amplification strategy for label-free electrochemical DNA sensor based on the interaction between α-cyclodextrin and ferrocenyl indicator. Bioelectrochemistry (Amsterdam, Netherlands) 151:108373. doi:10.1016/j.bioelechem.2023.108373.
  • Heggestad, J. T., R. J. Britton, D. S. Kinnamon, J. Liu, J. G. Anderson, D. Y. Joh, Z. Quinn, C. M. Fontes, A. M. Hucknall, R. Parks, et al. 2023. COVID-19 diagnosis and SARS-CoV-2 strain identification by a rapid, multiplexed, point-of-care antibody microarray. Analytical Chemistry 95 (13):5610–7. doi:10.1021/acs.analchem.2c05180.
  • Hu, K., J. Cheng, K. Wang, Y. Zhao, Y. Liu, H. Yang, and Z. Zhang. 2022. Sensitive electrochemical immunosensor for CYFRA21-1 detection based on AuNPs@MoS2@Ti3C2Tx composites. Talanta 238 (Pt 1):122987. doi:10.1016/j.talanta.2021.122987.
  • Kang, T. J., J. M. Lu, T. Yu, Y. Long, and G. Z. Liu. 2022. Advances in nucleic acid amplification techniques (NAATs): COVID-19 point-of-care diagnostics as an example. Biosensors & Bioelectronics 206:114109. doi:10.1016/j.bios.2022.114109.
  • Lee, S. H., S. M. Park, B. N. Kim, O. S. Kwon, W. Y. Rho, and B. H. Jun. 2019. Emerging ultrafast nucleic acid amplification technologies for next-generation molecular diagnostics. Biosensors & Bioelectronics 141:111448. doi:10.1016/j.bios.2019.111448.
  • Li, Z. Y., X. Ding, K. Yin, Z. H. Xu, K. Cooper, and C. C. Liu. 2021. Electric field-enhanced electrochemical CRISPR biosensor for DNA detection. Biosensors & Bioelectronics 192:113498. doi:10.1016/j.bios.2021.113498.
  • Li, S. G., H. X. Li, X. Li, M. Zhu, H. Li, and F. Xia. 2021. Hybridization chain reaction-amplified electrochemical DNA-based sensors enable calibration-free measurements of nucleic acids directly in whole blood. Analytical Chemistry 93 (23):8354–61. doi:10.1021/acs.analchem.1c01436.
  • Liu, J., N. Zhang, J. Li, M. Li, G. Wang, W. Wang, Y. Fan, S. Jiang, G. Chen, Y. Zhang, et al. 2022. A novel umami electrochemical biosensor based on AuNPs@ZIF-8/Ti3C2 MXene immobilized T1R1-VFT. Food Chemistry 397:133838. doi:10.1016/j.foodchem.2022.133838.
  • Nantaphol, S., C. Moonla, S. Promvichai, T. Tangkuaram, O. Chailapakul, and W. Siangproh. 2020. A new alternative assay for sensitive analysis of ethylenethiourea and propylenethiourea in fruit samples after their separation. Analytical Methods: Advancing Methods and Applications 12 (29):3705–12. doi:10.1039/d0ay01001d.
  • Nelson, P. P., B. A. Rath, P. C. Fragkou, E. Antalis, S. Tsiodras, and C. Skevaki. 2020. Current and future point-of-care tests for emerging and new respiratory viruses and future perspectives. Frontiers in Cellular and Infection Microbiology 10:181. doi:10.3389/fcimb.2020.00181.
  • Nobusawa, K., H. W. Han, F. Takei, T. C. Chu, N. Hashida, and I. Yamashita. 2022. Electrochemical impedimetric real-time polymerase chain reactions using anomalous charge transfer enhancement. Analytical Chemistry 94 (22):7747–51. doi:10.1021/acs.analchem.2c01659.
  • Pothipor, C., N. Aroonyadet, S. Bamrungsap, J. Jakmunee, and K. Ounnunkad. 2021. A highly sensitive electrochemical microRNA-21 biosensor based on intercalating methylene blue signal amplification and a highly dispersed gold nanoparticles/graphene/polypyrrole composite. The Analyst 146 (8):2679–88. doi:10.1039/d1an00116g.
  • Rashed, M. A., F. A. Harraz, M. Faisal, A. M. El-Toni, M. Alsaiari, and M. S. Al-Assiri. 2021. Gold nanoparticles plated porous silicon nanopowder for nonenzymatic voltammetric detection of hydrogen peroxide. Analytical Biochemistry 615:114065. doi:10.1016/j.ab.2020.114065.
  • Shahdost-Fard, F., and M. Roushani. 2020. Designing of an ultrasensitive BCM-7 aptasensor based on an SPCE modified with AuNR for promising distinguishing of autism disorder. Talanta 209:120506. doi:10.1016/j.talanta.2019.120506.
  • Song, Y., S. Kim, M. J. Heller, and X. Huang. 2018. DNA multi-bit non-volatile memory and bit-shifting operations using addressable electrode arrays and electric field-induced hybridization. Nature Communications 9 (1):281. doi:10.1038/s41467-017-02705-8.
  • Tymoczko, J., W. Schuhmann, and M. Gebala. 2014. Electrical potential-assisted DNA hybridization. How to mitigate electrostatics for surface DNA hybridization. ACS Applied Materials & Interfaces 6 (24):21851–8. doi:10.1021/am5027902.
  • Wang, X. J., Y. Li, M. Y. Zhao, H. X. Wang, Q. Y. Wan, C. Shi, and C. P. Ma. 2022. An ultrafast ratiometric electrochemical biosensor based on potential-assisted hybridization for nucleic acids detection. Analytica Chimica Acta 1211:339915. doi:10.1016/j.aca.2022.339915.
  • Wang, Y., W. W. Meng, X. Chen, and Y. Z. Zhang. 2019a. DNA-templated copper nanoparticles as signalling probe for electrochemical determination of microRNA-222. Mikrochimica Acta 187 (1):4. doi:10.1007/s00604-019-4011-7.
  • Wang, Z. H., R. Z. Yu, H. Zeng, X. X. Wang, S. Z. Luo, W. H. Li, X. L. Luo, and T. Yang. 2019b. Nucleic acid-based ratiometric electrochemiluminescent, electrochemical and photoelectrochemical biosensors: A review. Mikrochimica Acta 186 (7):405. doi:10.1007/s00604-019-3514-6.
  • Wong, I. Y., and N. A. Melosh. 2009. Directed hybridization and melting of DNA linkers using counterion-screened electric fields. Nano Letters 9 (10):3521–6. doi:10.1021/nl901710n.
  • Wong, I. Y., and N. A. Melosh. 2010. An electrostatic model for DNA surface hybridization. Biophysical Journal 98 (12):2954–63. doi:10.1016/j.bpj.2010.03.017.
  • Wu, H., G. Zhang, and X. Yang. 2023. Electrochemical immunosensor based on Fe3O4/MWCNTs-COOH/AuNPs nanocomposites for trace liver cancer marker alpha-fetoprotein detection. Talanta 259:124492. doi:10.1016/j.talanta.2023.124492.
  • Yadegari, H., M. Mohammadi, F. Maghsood, A. Ghorbani, T. Bahadori, F. Golsaz-Shirazi, A. H. Zarnani, V. Salimi, M. Jeddi-Tehrani, M. M. Amiri, et al. 2023. Diagnostic performance of a novel antigen-capture ELISA for the detection of SARS-CoV-2. Analytical Biochemistry 666:115079. doi:10.1016/j.ab.2023.115079.
  • Zhan, X. H., S. Y. Hu, J. Q. Wang, H. Chen, X. M. Chen, J. B. Yang, H. Yang, and Z. H. Su. 2021. One-pot electrodeposition of metal organic frameworks composite accelerated by gold nanoparticles and electroreduced carbon dots for electroanalysis of bisphenol A in real plastic samples. Sensors and Actuators B: Chemical 346:130499. doi:10.1016/j.snb.2021.130499.
  • Zhang, W., Y. He, Z. Feng, J. Zhang, and J. J. Zhang. 2022. Recent advances of functional nucleic acid‑based sensors for point‑of‑care detection of SARS-CoV-2. Mikrochimica Acta 189 (3):128. doi:10.1007/s00604-022-05242-4.
  • Zhang, N. R., L. L. Wang, X. Q. Deng, R. Y. Liang, M. Su, C. He, L. F. Hu, Y. D. Su, J. Ren, F. Yu, et al. 2020. Recent advances in the detection of respiratory virus infection in humans. Journal of Medical Virology 92 (4):408–17. doi:10.1002/jmv.25674.
  • Zhao, G., X. C. Wang, G. Liu, Y. Q. Cao, N. Liu, N. T. D. Thuy, L. T. Zhang, and M. Yu. 2022. A flexible and disposable electrochemical sensor for the evaluation of arsenic levels: A new and efficient method for the batch fabrication of chemically modified electrodes. Analytica Chimica Acta 1194:339413. doi:10.1016/j.aca.2021.339413.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.