68
Views
0
CrossRef citations to date
0
Altmetric
Sensors

Electrochemically Functionalized Single-Walled Carbon Nanotubes With Polypyrrole for the Detection of Sub-Part-per-Million Concentrations of Ammonia

, , , , &
Pages 1944-1957 | Received 14 Jul 2023, Accepted 06 Nov 2023, Published online: 16 Nov 2023

References

  • Abdulhameed, A., M. M. Halim, and I. A. Halin. 2023. Dielectrophoretic alignment of carbon nanotubes: Theory, applications, and future. Nanotechnology 34 (24):242001. doi:10.1088/1361-6528/acc46c.
  • An, K. H., S. Y. Jeong, H. R. Hwang, and Y. H. Lee. 2004. Enhanced sensitivity of a gas sensor incorporating single-walled carbon nanotube–polypyrrole nanocomposites. Advanced Materials 16 (12):1005–9. doi:10.1002/adma.200306176.
  • Bati, A. S. R., L. Yu, M. Batmunkh, and J. G. Shapter. 2019. Recent advances in applications of sorted single-walled carbon nanotubes. Advanced Functional Materials 29 (30):1902273. doi:10.1002/adfm.201902273.
  • Chartuprayoon, N., C. M. Hangarter, Y. Rheem, H. Jung, and N. V. Myung. 2010. Wafer-scale fabrication of single polypyrrole nanoribbon-based ammonia sensor. The Journal of Physical Chemistry C 114 (25):11103–8. doi:10.1021/jp102858w.
  • Chartuprayoon, N., Y. Rheem, J. C. K. Ng, J. Nam, W. Chen, and N. V. Myung. 2013. Polypyrrole nanoribbon based chemiresistive immunosensors for viral plant pathogen detection. Analytical Methods 5 (14):3497–502. doi:10.1039/c3ay40371h.
  • Chartuprayoon, N., M. Zhang, W. Bosze, Y.-H. Choa, and N. V. Myung. 2015. One-dimensional nanostructures based bio-detection. Biosensors & Bioelectronics 63:432–43. doi:10.1016/j.bios.2014.07.043.
  • Chen, X., X. Chen, X. Ding, X. Yu, and X. Yu. 2019. Enhanced ammonia sensitive properties and mechanism research of PANI modified with hydroxylated single-walled nanotubes. Materials Chemistry and Physics 226:378–86. doi:10.1016/j.matchemphys.2019.01.061.
  • Chio, L., R. L. Pinals, A. Murali, N. S. Goh, and M. P. Landry. 2020. Covalent surface modification effects on single-walled carbon nanotubes for targeted sensing and optical imaging. Advanced Functional Materials 30 (17):1910556. doi:10.1002/adfm.201910556.
  • Deng, Y., L. Liu, J. Li, and L. Gao. 2022. Sensors based on the carbon nanotube field-effect transistors for chemical and biological analyses. Biosensors 12 (10):776. doi:10.3390/bios12100776.
  • Hangarter, C. M., M. Bangar, S. C. Hernandez, W. Chen, M. A. Deshusses, A. Mulchandani, and N. V. Myung. 2008. Maskless electrodeposited contact for conducting polymer nanowires. Applied Physics Letters 92 (7):073104. doi:10.1063/1.2883923.
  • Hangarter, C. M., N. Chartuprayoon, S. C. Hernández, Y. Choa, and N. V. Myung. 2013. Hybridized conducting polymer chemiresistive nano-sensors. Nano Today.8 (1):39–55. doi:10.1016/j.nantod.2012.12.005.
  • Hashtroudi, H., I. D. R. Mackinnon, and M. Shafiei. 2020. Emerging 2D hybrid nanomaterials: Towards enhanced sensitive and selective conductometric gas sensors at room temperature. Journal of Materials Chemistry C 8 (38):13108–26. doi:10.1039/D0TC01968B.
  • He, L., Y. Jia, F. Meng, M. Li, and J. Liu. 2009. Gas sensors for ammonia detection based on polyaniline-coated multi-wall carbon nanotubes. Materials Science and Engineering: B 163 (2):76–81. doi:10.1016/j.mseb.2009.05.009.
  • He, M., S. Zhang, and J. Zhang. 2020. Horizontal single-walled carbon nanotube arrays: Controlled synthesis, characterizations, and applications. Chemical Reviews 120 (22):12592–684. doi:10.1021/acs.chemrev.0c00395.
  • Huang, L., P. Jiang, D. Wang, Y. Luo, M. Li, H. Lee, and R. A. Gerhardt. 2014. A novel paper-based flexible ammonia gas sensor via silver and SWNT-PABS inkjet printing. Sensors and Actuators B: Chemical 197:308–13. doi:10.1016/j.snb.2014.02.081.
  • Jaymand, M. 2013. Recent progress in chemical modification of polyaniline. Progress in Polymer Science 38 (9):1287–306. doi:10.1016/j.progpolymsci.2013.05.015.
  • Jeong, D. W., K. H. Kim, B. S. Kim, and Y. T. Byun. 2021. Characteristics of highly sensitive and selective nitric oxide gas sensors using defect-functionalized single-walled carbon nanotubes at room temperature. Applied Surface Science 550:149250. doi:10.1016/j.apsusc.2021.149250.
  • Kwak, D., M. Wang, K. J. Koski, L. Zhang, H. Sokol, R. Maric, and Y. Lei. 2019. Molybdenum trioxide (α-MoO3) nanoribbons for ultrasensitive ammonia (NH3) gas detection: Integrated experimental and density functional theory simulation studies. ACS Applied Materials & Interfaces 11 (11):10697–706. doi:10.1021/acsami.8b20502.
  • Liu, S. F., L. C. H. Moh, and T. M. Swager. 2015. Single-walled carbon nanotube–metalloporphyrin chemiresistive gas sensor arrays for volatile organic compounds. Chemistry of Materials 27 (10):3560–3. doi:10.1021/acs.chemmater.5b00153.
  • Lobotka, P., P. Kunzo, E. Kovacova, I. Vavra, Z. Krizanova, V. Smatko, J. Stejskal, E. N. Konyushenko, M. Omastova, Z. Spitalsky, et al. 2011. Thin polyaniline and polyaniline/carbon nanocomposite films for gas sensing. Thin Solid Films.519 (12):4123–7. doi:10.1016/j.tsf.2011.01.177.
  • MacDiarmid, A. G. 2001. Nobel lecture: “Synthetic metals”: A novel role for organic polymers. Reviews of Modern Physics 73 (3):701–12. doi:10.1103/RevModPhys.73.701.
  • Mani, G. K., and J. B. B. Rayappan. 2014. Selective detection of ammonia using spray pyrolysis deposited pure and nickel doped ZnO thin films. Applied Surface Science 311:405–12. doi:10.1016/j.apsusc.2014.05.075.
  • Mani, G. K., and J. B. B. Rayappan. 2015. A highly selective and wide range ammonia sensor—Nanostructured ZnO:Co thin film. Materials Science and Engineering: B 191:41–50. doi:10.1016/j.mseb.2014.10.007.
  • Meng, D., J. Fan, J. Ma, S.-W. Du, and J. Geng. 2019. The preparation and functional applications of carbon nanomaterial/conjugated polymer composites. Composites Communications 12:64–73. doi:10.1016/j.coco.2018.12.009.
  • Mubeen, S., T. Zhang, B. Yoo, M. A. Deshusses, and N. V. Myung. 2007. Palladium nanoparticles decorated single-walled carbon nanotube hydrogen sensor. The Journal of Physical Chemistry C 111 (17):6321–7. doi:10.1021/jp067716m.
  • Norizan, M. N., M. H. Moklis, S. Z. Ngah Demon, N. A. Halim, A. Samsuri, I. S. Mohamad, V. F. Knight, and N. Abdullah. 2020. Carbon nanotubes: Functionalisation and their application in chemical sensors. RSC Advances 10 (71):43704–32. doi:10.1039/d0ra09438b.
  • Penza, M., M. Alvisi, R. Rossi, E. Serra, R. Paolesse, A. D’Amico, and C. Di Natale. 2011. Carbon nanotube films as a platform to transduce molecular recognition events in metalloporphyrins. Nanotechnology 22 (12):125502. doi:10.1088/0957-4484/22/12/125502.
  • Penza, M., R. Rossi, M. Alvisi, M. A. Signore, E. Serra, R. Paolesse, A. D’Amico, and C. Di Natale. 2010. Metalloporphyrins-modified carbon nanotubes networked films-based chemical sensors for enhanced gas sensitivity. Sensors and Actuators B: Chemical 144 (2):387–94. doi:10.1016/j.snb.2008.12.060.
  • Ramón-Azcón, J., S. Ahadian, M. Estili, X. Liang, S. Ostrovidov, H. Kaji, H. Shiku, M. Ramalingam, K. Nakajima, Y. Sakka, et al. 2013. Dielectrophoretically aligned carbon nanotubes to control electrical and mechanical properties of hydrogels to fabricate contractile muscle myofibers. Advanced Materials (Deerfield Beach, Fla.) 25 (29):4028–34. doi:10.1002/adma.201301300.
  • Sarkar, T., and S. Srinives. 2018. Single-walled carbon nanotubes-calixarene hybrid for sub-ppm detection of NO2. Microelectronic Engineering 197:28–32. doi:10.1016/j.mee.2018.05.004.
  • Sarkar, T., and S. Srinives. 2021. Electrochemically functionalized single-walled carbon nanotubes for ultrasensitive detection of BTEX vapors. Microelectronic Engineering 247:111584. doi:10.1016/j.mee.2021.111584.
  • Sarkar, T., S. Srinives, S. Sarkar, R. C. Haddon, and A. Mulchandani. 2014. Single-walled carbon nanotube–poly(porphyrin) hybrid for volatile organic compounds detection. The Journal of Physical Chemistry C 118 (3):1602–10. doi:10.1021/jp409851m.
  • Shirsat, M. D., T. Sarkar, J. Kakoullis, Jr., N. V. Myung, B. Konnanath, A. Spanias, and A. Mulchandani. 2012. Porphyrin-functionalized single-walled carbon nanotube chemiresistive sensor arrays for VOCs. The Journal of Physical Chemistry. C, Nanomaterials and Interfaces 116 (5):3845–50. doi:10.1021/jp210582t.
  • Srinives, S., T. Sarkar, R. Hernandez, and A. Mulchandani. 2015. A miniature chemiresistor sensor for carbon dioxide. Analytica Chimica Acta 874:54–8. doi:10.1016/j.aca.2015.03.020.
  • Srinives, S., T. Sarkar, R. Hernandez, and A. Mulchandani. 2017. Potassium iodide-functionalized polyaniline nanothin film chemiresistor for ultrasensitive ozone gas sensing. Polymers 9 (3):80. doi:10.3390/polym9030080.
  • Srinives, S., T. Sarkar, and A. Mulchandani. 2013. Nanothin polyaniline film for highly sensitive chemiresistive gas sensing. Electroanalysis 25 (6):1439–45. doi:10.1002/elan.201300015.
  • Srinives, S., T. Sarkar, and A. Mulchandani. 2014. Primary amine-functionalized polyaniline nanothin film sensor for detecting formaldehyde. Sensors and Actuators B: Chemical 194:255–9. doi:10.1016/j.snb.2013.12.079.
  • Su, H. C., M. Zhang, W. Bosze, and N. V. Myung. 2014. Tin dioxide functionalized single-walled carbon nanotube (SnO2/SWNT)-based ammonia gas sensors and their sensing mechanism. Journal of the Electrochemical Society 161 (14):B283–B290. doi:10.1149/2.1081412jes.
  • Talwar, V., O. Singh, and R. C. Singh. 2014. ZnO assisted polyaniline nanofibers and its application as ammonia gas sensor. Sensors and Actuators B: Chemical 191:276–82. doi:10.1016/j.snb.2013.09.106.
  • Tsai, Y. C., S.-C. Li, and S. W. Liao. 2006. Electrodeposition of polypyrrole–multiwalled carbon nanotube–glucose oxidase nanobiocomposite film for the detection of glucose. Biosensors & Bioelectronics 22 (4):495–500. doi:10.1016/j.bios.2006.06.009.
  • Timmer, B., W. Olthuis, and A. v d Berg. 2005. Ammonia sensors and their applications—a review. Sensors and Actuators B: Chemical 107 (2):666–77. doi:10.1016/j.snb.2004.11.054.
  • Tran, T. T., K. Clark, W. Ma, and A. Mulchandani. 2020. Detection of a secreted protein biomarker for citrus Huanglongbing using a single-walled carbon nanotubes-based chemiresistive biosensor. Biosensors & Bioelectronics 147:111766. doi:10.1016/j.bios.2019.111766.
  • Wu, T. W., H.-L. Chang, and Y.-W. Lin. 2009. Synthesis and characterization of conductive polypyrrole with improved conductivity and processability. Polymer International 58 (9):1065–70. doi:10.1002/pi.2634.
  • Zang, X., Y. Jiang, Y. Chai, F. Li, J. Ji, and M. Xue. 2022. Tunable metallic-like transport in polypyrrole. Materials Futures 1 (1):011001. doi:10.1088/2752-5724/ac44ab.
  • Zhang, T., M. B. Nix, B.-Y. Yoo, M. A. Deshusses, and N. V. Myung. 2006. Electrochemically functionalized single-walled carbon nanotube gas sensor. Electroanalysis 18 (12):1153–8. doi:10.1002/elan.200603527.
  • Zhang, T., S. Mubeen, N. V. Myung, and M. A. Deshusses. 2008. Recent progress in carbon nanotube-based gas sensors. Nanotechnology 19 (33):332001. doi:10.1088/0957-4484/19/33/332001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.