67
Views
0
CrossRef citations to date
0
Altmetric
Spectroscopy

Tobacco Leaves Maturity Classification Based on Deep Learning and Proximal Hyperspectral Imaging

, , , , &
Pages 2034-2049 | Received 29 Sep 2023, Accepted 14 Nov 2023, Published online: 23 Nov 2023

References

  • Agarwal, M., T. Al-Shuwaili, A. Nugaliyadde, P. Wang, K. W. Wong, and Y. Ren. 2020. Identification and diagnosis of whole body and fragments of Trogoderma granarium and Trogoderma variabile using visible near infrared hyperspectral imaging technique coupled with deep learning. Computers and Electronics in Agriculture 173:105438. doi: 10.1016/j.compag.2020.105438.
  • Brugger, A., P. Schramowski, S. Paulus, U. Steiner, K. Kersting, and A. K. Mahlein. 2021. Spectral signatures in the UV range can be combined with secondary plant metabolites by deep learning to characterize barley–powdery mildew interaction. Plant Pathology 70 (7):1572–82. doi: 10.1111/ppa.13411.
  • Chen, C.-J., Y.-J. Yan, C.-C. Huang, J.-T. Chien, C.-T. Chu, J.-W. Jang, T.-C. Chen, S.-G. Lin, R.-S. Shih, and M. Ou-Yang. 2022. Sugariness prediction of Syzygium samarangense using convolutional learning of hyperspectral images. Scientific Reports 12 (1):2774. doi: 10.1038/s41598-022-06679-6.
  • Chen, Y., J. Bin, C. Zou, and M. Ding. 2021. Discrimination of fresh tobacco leaves with different maturity levels by near-infrared (NIR) spectroscopy and deep learning. Journal of Analytical Methods in Chemistry 2021:9912589–11. doi: 10.1155/2021/9912589.
  • Chen, Y., Y. Zhao, A. Xu, Z. Zheng, D. Gao, F. Wang, J. Wang, C. Zou, and T. Li. 2019. Effects of harvest maturity on fresh leaf quality, yield and quality of flue-cured tobacco K326. Southwest China Journal of Agricultural Sciences 32 (3):659–64. doi: 10.16213/j.cnki.scjas.2019.3.032.
  • Cui, Q., B. Yang, B. Liu, Y. Li, and J. Ning. 2022. Tea Category Identification Using Wavelet Signal Reconstruction of Hyperspectral Imagery and Machine Learning. Agriculture 12 (8):1085. doi: 10.3390/agriculture12081085.
  • Cui, R., J. Li, Y. Wang, S. Fang, K. Yu, and Y. Zhao. 2022. Hyperspectral imaging coupled with Dual-channel convolutional neural network for early detection of apple valsa canker. Computers and Electronics in Agriculture 202:107411. doi: 10.1016/j.compag.2022.107411.
  • De Roton, C., J. Tancogne, and R. Bazin. 1997. Effect of maturity on the leaf characteristics of flue-cured varieties K326 and ITB 31612. CORESTA Congress, Agro-Photo Groups 3.
  • Fazari, A., O. J. Pellicer-Valero, J. Gómez-Sanchıs, B. Bernardi, S. Cubero, S. Benalia, G. Zimbalatti, and J. Blasco. 2021. Application of deep convolutional neural networks for the detection of anthracnose in olives using VIS/NIR hyperspectral images. Computers and Electronics in Agriculture 187:106252. doi: 10.1016/j.compag.2021.106252.
  • Feng, Z., W. Li, and D. Cui. 2022. Detection of endogenous foreign bodies in Chinese hickory nuts by hyperspectral spectral imaging at the pixel level. International Journal of Agricultural and Biological Engineering 15 (2):204–10. doi: 10.25165/j.ijabe.20221502.6881.
  • Gao, Z., Y. Shao, G. Xuan, Y. Wang, Y. Liu, and X. Han. 2020. Real-time hyperspectral imaging for the in-field estimation of strawberry ripeness with deep learning. Artificial Intelligence in Agriculture 4:31–8. doi: 10.1016/j.aiia.2020.04.003.
  • Garillos-Manliguez, C. A., and J. Y. Chiang. 2021. Multimodal deep learning and visible-light and hyperspectral imaging for fruit maturity estimation. Sensors 21 (4):1288. doi: 10.3390/s21041288.
  • Gomes, V., A. Mendes-Ferreira, and P. Melo-Pinto. 2021. Application of hyperspectral imaging and deep learning for robust prediction of sugar and pH levels in wine grape berries. Sensors 21 (10):3459. doi: 10.3390/s21103459.
  • Kabir, M. H., M. L. Guindo, R. Chen, F. Liu, X. Luo, and W. Kong. 2022. Deep learning combined with hyperspectral imaging technology for variety discrimination of Fritillaria thunbergii. Molecules (Basel, Switzerland) 27 (18):6042. doi: 10.3390/molecules27186042.
  • Kakie, T. 1974. Metabolism of glucose, fructose, and sucrose in tobacco leaves during maturity. Soil Science and Plant Nutrition 20 (3):271–8. doi: 10.1080/00380768.1974.10433249.
  • Leng, W., and R. Mu. 2020. Barriers to tobacco control in China: A narrative review. Societies 10 (4):101. doi: 10.3390/soc10040101.
  • Li, Y., B. Ma, C. Li, and G. Yu. 2022. Accurate prediction of soluble solid content in dried Hami jujube using SWIR hyperspectral imaging with comparative analysis of models. Computers and Electronics in Agriculture 193:106655. doi: 10.1016/j.compag.2021.106655.
  • Liang, D. 2001. Encyclopedia of Chinese tobacco. Beijing, China: Guangming Daily Publishing House.
  • Liu, Y., S. Zhou, H. Wu, W. Han, C. Li, and H. Chen. 2022. Joint optimization of autoencoder and self-supervised classifier: Anomaly detection of strawberries using hyperspectral imaging. Computers and Electronics in Agriculture 198:107007. doi: 10.1016/j.compag.2022.107007.
  • Lu, B., P. D. Dao, J. Liu, Y. He, and J. Shang. 2020. Recent advances of hyperspectral imaging technology and applications in agriculture. Remote Sensing 12 (16):2659. doi: 10.3390/rs12162659.
  • Lu, X., C. Zhao, Y. Qin, L. Xie, T. Wang, Z. Wu, and Z. Xu. 2023. The application of hyperspectral images in the classification of fresh leaves’ maturity for flue-curing tobacco. Processes 11 (4):1249. doi: 10.3390/pr11041249.
  • Mansuri, S. M., S. K. Chakraborty, N. K. Mahanti, and R. Pandiselvam. 2022. Effect of germ orientation during Vis-NIR hyperspectral imaging for the detection of fungal contamination in maize kernel using PLS-DA, ANN and 1D-CNN modelling. Food Control.139:109077. doi: 10.1016/j.foodcont.2022.109077.
  • Noviyanto, A., and W. H. Abdulla. 2019. Segmentation and calibration of hyperspectral imaging for honey analysis. Computers and Electronics in Agriculture 159:129–39. doi: 10.1016/j.compag.2019.02.006.
  • Onmankhong, J., T. Ma, T. Inagaki, P. Sirisomboon, and S. Tsuchikawa. 2022. Cognitive spectroscopy for the classification of rice varieties: A comparison of machine learning and deep learning approaches in analysing long-wave near-infrared hyperspectral images of brown and milled samples. Infrared Physics & Technology 123:104100. doi: 10.1016/j.infrared.2022.104100.
  • Rangarajan, A. K., R. L. Whetton, and A. M. Mouazen. 2022. Detection of fusarium head blight in wheat using hyperspectral data and deep learning. Expert Systems with Applications 208:118240.
  • Seo, Y., G. Kim, J. Lim, A. Lee, B. Kim, J. Jang, C. Mo, and M. S. Kim. 2021. Non-destructive detection pilot study of vegetable organic residues using VNIR hyperspectral imaging and deep learning techniques. Sensors 21 (9):2899. doi: 10.3390/s21092899.
  • Su, Z., C. Zhang, T. Yan, J. Zhu, Y. Zeng, X. Lu, P. Gao, L. Feng, L. He, and L. Fan. 2021. Application of hyperspectral imaging for maturity and soluble solids content determination of strawberry with deep learning approaches. Frontiers in Plant Science 12:736334. doi: 10.3389/fpls.2021.736334.
  • Wendel, A., J. Underwood, and K. Walsh. 2018. Maturity estimation of mangoes using hyperspectral imaging from a ground based mobile platform. Computers and Electronics in Agriculture 155:298–313. doi: 10.1016/j.compag.2018.10.021.
  • Yang, M. 2022. Physiological disorder diagnosis of plant leaves based on full-Spectrum hyperspectral images with convolutional neural network. Horticulturae 8 (9):854. doi: 10.3390/horticulturae8090854.
  • Yu, Z. 2022. Effect of maturity on quality of fresh tobacco leaves and flue-cured tobacco leaves quality of upper leaves. Journal of Zhejiang Agricultural Sciences 63 (8):1847.
  • Zhang, J., Y. Yang, X. Feng, H. Xu, J. Chen, and Y. He. 2020. Identification of bacterial blight resistant rice seeds using terahertz imaging and hyperspectral imaging combined with convolutional neural network. Frontiers in Plant Science 11:821. doi: 10.3389/fpls.2020.00821.
  • Zhang, L., D. Wang, J. Liu, and D. An. 2022. Vis-NIR hyperspectral imaging combined with incremental learning for open world maize seed varieties identification. Computers and Electronics in Agriculture 199:107153. doi: 10.1016/j.compag.2022.107153.
  • Zhang, L., X. Zhang, H. Ji, W. Wang, J. Liu, F. Wang, F. Xie, Y. Yu, Y. Qin, and X. Wang. 2018. Metabolic profiling of tobacco leaves at different growth stages or different stalk positions by gas chromatography–mass spectrometry. Industrial Crops and Products 116:46–55. doi: 10.1016/j.indcrop.2018.02.041.
  • Zhang, Y., Y. Zhu, X. Liu, Y. Lu, C. Liu, X. Zhou, and W. Fan. 2023. In-Field Tobacco Leaf Maturity Detection with an Enhanced MobileNetV1: Incorporating a Feature Pyramid Network and Attention Mechanism. Sensors 23 (13):5964. doi: 10.3390/s23135964.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.