173
Views
14
CrossRef citations to date
0
Altmetric
Separations

Facile Fabrication of a Free-Standing Magnesium Oxide-Graphene Oxide Functionalized Membrane: A Robust and Efficient Material for the Removal of Pollutants from Aqueous Matrices

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 2067-2084 | Received 26 Jul 2023, Accepted 14 Nov 2023, Published online: 24 Nov 2023

References

  • Ahmad, S., M. Almehmadi, H. T. Janjuhah, G. Kontakiotis, O. Abdulaziz, K. Saeed, H. Ahmad, M. Allahyani, A. Aljuaid, A. A. Alsaiari, et al. 2023. The effect of mineral ions present in tap water on photodegradation of organic pollutants: Future perspectives. Water 15 (1):175. doi: 10.3390/w15010175.
  • Akbari, A., M. Amini, A. Tarassoli, B. Eftekhari-Sis, N. Ghasemian, and E. Jabbari. 2018. Transition metal oxide nanoparticles as efficient catalysts in oxidation reactions. Nano-Structures & Nano-Objects 14:19–48. doi: 10.1016/j.nanoso.
  • Alazmi, A., S. Rasul, S. P. Patole, and P. M. Costa. 2016. Comparative study of synthesis and reduction methods for graphene oxide. Polyhedron 116:153–61. doi: 10.1016/j.poly.2016.04.044.
  • Baig, U., M. Faizan, and M. Sajid. 2020. Multifunctional membranes with super-wetting characteristics for oil-water separation and removal of hazardous environmental pollutants from water: A review. Advances in Colloid and Interface Science 285:102276. doi: 10.1016/j.cis.2020.102276.
  • Bandaru, L. J. M., L. Murumulla, and S. Challa. 2023. Exposure of combination of environmental pollutant, lead (Pb) and β-amyloid peptides causes mitochondrial dysfunction and oxidative stress in human neuronal cells. Journal of Bioenergetics and Biomembranes 55 (1):79–89. doi: 10.1007/s10863-023-09956-9.
  • Buledi, J. A., A. R. Solangi, A. Mallah, Z.-U.-H. Shah, S. T. Sherazi, M. R. Shah, A. Hyder, and S. Ali. 2023. Electrochemical monitoring of isoproturon herbicide using NiO/V2O5/rGO/GCE. Journal of Food Measurement and Characterization 17 (2):1628–39. doi: 10.1007/s11694-022-01733-3.
  • Buledi, J. A., A. R. Solangi, A. Hyder, N. H. Khand, S. A. Memon, A. Mallah, N. Mahar, E. N. Dragoi, P. Show, M. Behzadpour, et al. 2022. Selective oxidation of amaranth dye in soft drinks through tin oxide decorated reduced graphene oxide nanocomposite based electrochemical sensor. Food and Chemical Toxicology 165:113177. doi: 10.1016/j.fct.2022.113177.
  • Castro-Muñoz, R. 2020. Breakthroughs on tailoring pervaporation membranes for water desalination: A review. Water Research 187:116428. doi: 10.1016/j.watres.2020.116428.
  • Chandio, I., F. A. Janjhi, A. A. Memon, S. Memon, Z. Ali, K. H. Thebo, A. A. A. Pirzado, A. A. Hakro, and W. S. Khan. 2021. Ultrafast ionic and molecular sieving through graphene oxide based composite membranes. Desalination 500:114848. doi: 10.1016/j.desal.2020.114848.
  • Chowdhury, I. H., A. H. Chowdhury, P. Bose, S. Mandal, and M. K. Naskar. 2016. Effect of anion type on the synthesis of mesoporous nanostructured MgO, and its excellent adsorption capacity for the removal of toxic heavy metal ions from water. RSC Advances 6 (8):6038–47. doi: 10.1039/C5RA16837F.
  • Dmitrieva, E., A. Raeva, D. Razlataya, and T. Anokhina. 2023. Eco-friendly OSN membranes based on alginate salts with variable nanofiltration properties. Membranes 13 (2):244. doi: 10.3390/membranes13020244.
  • Dzumbira, W., N. Ali, C. Duanmu, Y. Yang, A. Khan, F. Ali, M. Bilal, L. Aleya, and H. M. Iqbal. 2021. Separation and remediation of environmental pollutants using metal–organic framework-based tailored materials. Environmental Science and Pollution Research International 29 (4):4822–42. doi: 10.1007/s11356-021-17446-x.
  • Echterhoff, R., and E. Knözinger. 1990. FTIR spectroscopic characterization of the adsorption and desorption of ammonia on MgO surfaces. Surface Science 230 (1-3):237–44. doi: 10.1016/0039-6028(90)90031-3.
  • Ge, R., T. Huo, Z. Gao, J. Li, and X. Zhan. 2023. GO-based membranes for desalination. Membranes 13 (2):220. doi: 10.3390/membranes13020220.
  • Guru, A., and J. Arockiaraj. 2023. Exposure to environmental pollutant bisphenol A causes oxidative damage and lipid accumulation in Zebrafish larvae: Protective role of WL15 peptide derived from cysteine and glycine‐rich protein 2. Journal of Biochemical and Molecular Toxicology 37 (1):e23223. doi: 10.1002/jbt.23223.
  • Huang, Y.-W., C.-H. Wu, and R. S. Aronstam. 2010. Toxicity of transition metal oxide nanoparticles: Recent insights from in vitro studies. Materials (Basel, Switzerland) 3 (10):4842–59. doi: 10.3390/ma3104842.
  • Huang, H., Z. Song, N. Wei, L. Shi, Y. Mao, Y. Ying, L. Sun, Z. Xu, and X. Peng. 2013. Ultrafast viscous water flow through nanostrand-channelled graphene oxide membranes. Nature Communications 4 (1):2979. doi: 10.1038/ncomms3979.
  • Hu, M., and B. Mi. 2013. Enabling graphene oxide nanosheets as water separation membranes. Environmental Science & Technology 47 (8):3715–23. doi: 10.1021/es400571g.
  • Hung, W.-S., T.-J. Lin, Y.-H. Chiao, A. Sengupta, Y.-C. Hsiao, S. R. Wickramasinghe, C.-C. Hu, K.-R. Lee, and J.-Y. Lai. 2018. Graphene-induced tuning of the d-spacing of graphene oxide composite nanofiltration membranes for frictionless capillary action-induced enhancement of water permeability. Journal of Materials Chemistry A 6 (40):19445–54. doi: 10.1039/C8TA08155G.
  • Hyder, A., J. A. Buledi, M. Nawaz, D. B. Rajpar, Z.-U.-H. Shah, Y. Orooji, M. L. Yola, H. Karimi-Maleh, H. Lin, and A. R. Solangi. 2022. Identification of heavy metal ions from aqueous environment through gold, Silver and copper nanoparticles: An excellent colorimetric approach. Environmental Research 205:112475. doi: 10.1016/j.envres.2021.112475.
  • Hyder, A., M. Thebo, D. Janwery, J. A. Buledi, I. Chandio, A. Khalid, B. S. Al-Anzi, H. A. Almukhlifi, K. H. Thebo, F. N. Memon, et al. 2023. Fabrication of para-dimethylamine calix [4] arene functionalized self-assembled graphene oxide composite material for effective removal of 2, 4, 6-tri-cholorphenol from aqueous environment. Heliyon 9 (9):e19622. doi: 10.1016/j.heliyon.2023.e19622.
  • Hyder, A., J. A. Buledi, R. Memon, A. Qureshi, J. H. Niazi, A. R. Solangi, S. Memon, A. A. Memon, and K. H. Thebo. 2023. Modified electrochemical sensor via supramolecular structural functionalized graphene oxide for ultra-sensitive detection of gallic acid. Diamond and Related Materials 139:110357. doi: 10.1016/j.diamond.2023.110357.
  • Janwery, D., F. H. Memon, A. A. Memon, M. Iqbal, F. N. Memon, W. Ali, K.-H. Choi, and K. H. Thebo. 2023. Lamellar graphene oxide-based composite membranes for efficient separation of heavy metal ions and desalination of water. ACS Omega 8 (8):7648–56. doi: 10.1021/acsomega.2c07243.
  • Janjhi, F. A., D. Janwery, I. Chandio, S. Ullah, F. Rehman, A. A. Memon, J. Hakami, F. Khan, G. Boczkaj, and K. H. Thebo. 2022. Recent advances in graphene oxide‐based membranes for heavy metal ions separation. ChemBioEng Reviews 9 (6):574–90. doi: 10.1002/cben.202200015.
  • Khedr, M. G. 2013. Radioactive contamination of groundwater, special aspects and advantages of removal by reverse osmosis and nanofiltration 2013. Desalination 321:47–54. doi: 10.1016/j.desal.2013.01.013.
  • Lai, L., L. Chen, D. Zhan, L. Sun, J. Liu, S. H. Lim, C. K. Poh, Z. Shen, and J. Lin. 2011. One-step synthesis of NH2-graphene from in situ graphene-oxide reduction and its improved electrochemical properties. Carbon 49 (10):3250–7. doi: 10.1016/j.carbon.2011.03.051.
  • Li, Y., J. Jiao, Q. Wu, Q. Song, W. Xie, and B. Liu. 2022. Environmental applications of graphene oxide composite membranes. Chinese Chemical Letters 33 (12):5001–12. doi: 10.1016/j.cclet.2022.01.034.
  • Lin, Z., X. Liu, and B. Jiao. 2023. Deep eutectic solvents-modified advanced functional materials for pollutant detection in food and the environment. TrAC Trends in Analytical Chemistry 159:116923. doi: 10.1016/j.trac.2023.116923.
  • Liu, X., Y. Li, Z. Chen, H. Yang, Y. Cai, S. Wang, J. Chen, B. Hu, Q. Huang, C. Shen, et al. 2023. Advanced porous nanomaterials as superior adsorbents for environmental pollutants removal from aqueous solutions. Critical Reviews in Environmental Science and Technology 53 (13):1289–309. doi: 10.1080/10643389.2023.2168473.
  • Madhav, S., A. Ahamad, A. K. Singh, J. Kushawaha, J. S. Chauhan, S. Sharma, and P. Singh. 2020. Water pollutants: Sources and impact on the environment and human health. Sensors in Water Pollutants Monitoring: Role of Material 1st ed. Springer Nature.
  • Mahar, I., F. H. Memon, J. W. Lee, K. H. Kim, R. Ahmed, F. Soomro, F. Rehman, A. A. Memon, K. H. Thebo, and K. H. Choi. 2021. Two-dimensional transition metal carbides and nitrides (MXenes) for water purification and antibacterial applications. Membranes 11 (11):869. doi: 10.3390/membranes11110869.
  • Marcano, D. C., D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu, and J. M. Tour. 2010. Improved synthesis of graphene oxide. ACS Nano 4 (8):4806–14. doi: 10.1021/nn1006368.
  • Moon, I. K., J. Lee, R. S. Ruoff, and H. Lee. 2010. Reduced graphene oxide by chemical graphitization. Nature Communications 1 (1):73. doi: 10.1038/ncomms1067.
  • Mustapha, S., J. O. Tijani, T. C. Egbosiuba, A. A. Taiwo, S. A. Abdulkareem, A. Sumaila, M. M. Ndamitso, and U. N. Ayodesi. 2023. Removal of pollutants from wastewater through nanofiltration: A review. Nanofiltration Membrane for Water Purification 1st ed. Springer Nature.
  • Nair, R. R., H. A. Wu, P. N. Jayaram, I. V. Grigorieva, and A. K. Geim. 2012. Unimpeded permeation of water through helium-leak-tight graphene-based membranes. Science (New York, N.Y.) 335 (6067):442–4. doi: 10.1126/science.1211694.
  • Orbeck, J., K. Hedlund, and R. J. Hamers. 2020. Surface properties and interactions of transition metal oxide nanoparticles: A perspective on sustainability. Journal of Vacuum Science & Technology A 38:031001. doi: 10.1116/1.5141853.
  • Pei, S., and H.-M. Cheng. 2012. The reduction of graphene oxide. Carbon 50 (9):3210–28. doi: 10.1016/j.carbon.2011.11.010.
  • Qiu, Z., X. Ji, and C. He. 2018. Fabrication of a loose nanofiltration candidate from Polyacrylonitrile/Graphene oxide hybrid membrane via thermally induced phase separation. Journal of Hazardous Materials 360:122–31. doi: 10.1016/j.jhazmat.2018.08.004.
  • Rajendran, V., B. Deepa, and R. Mekala. 2018. Studies on structural, morphological, optical and antibacterial activity of pure and Cu-doped MgO nanoparticles synthesized by co-precipitation method. Materials Today: Proceedings 5 (2):8796–803. doi: 10.1016/j.matpr.2017.12.308.
  • Safaei, S., and R. Tavakoli. 2017. On the design of graphene oxide nanosheets membranes for water desalination. Desalination 422:83–90. doi: 10.1016/j.desal.2017.08.013.
  • Seabra, A. B., A. J. Paula, R. de Lima, O. L. Alves, and N. Durán. 2014. Nanotoxicity of graphene and graphene oxide. Chemical Research in Toxicology 27 (2):159–68. doi: 10.1021/tx400385x.
  • Sajid, M., M. K. Nazal, N. Baig, A. M. Osman. 2018. Removal of heavy metals and organic pollutants from water using dendritic polymers based adsorbents: A critical review. Separation and Purification Technology. 191:400–23. doi: 10.1016/j.seppur.2017.09.011.
  • Shahzad, M. K., F. H. Memon, F. Soomro, M. Iqbal, A. Ibrar, A. A. Memon, J. H. Lim, K. H. Choi, and K. H. Thebo. 2023. MoS2-based lamellar membranes for mass transport applications: Challenges and opportunities. Journal of Environmental Chemical Engineering 11 (2):109329. doi: 10.1016/j.jece.2023.109329.
  • Smith, A. T., A. M. LaChance, S. Zeng, B. Liu, and L. Sun. 2019. Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites. Nano Materials Science 1 (1):31–47. doi: 10.1016/j.nanoms.2019.02.004.
  • Solangi, N. H., R. R. Karri, S. A. Mazari, N. M. Mubarak, A. S. Jatoi, G. Malafaia, and A. K. Azad. 2023. MXene as emerging material for photocatalytic degradation of environmental pollutants. Coordination Chemistry Reviews 477:214965. doi: 10.1016/j.ccr.2022.214965.
  • Thebo, K. H., X. Qian, Q. Zhang, L. Chen, H.-M. Cheng, and W. Ren. 2018. Highly stable graphene-oxide-based membranes with superior permeability. Nature Communications 9 (1):1486. doi: 10.1038/s41467-018-03919-0.
  • Xing, C., J. Han, X. Pei, Y. Zhang, J. He, R. Huang, S. Li, C. Liu, C. Lai, L. Shen, et al. 2021. Tunable graphene oxide nanofiltration membrane for effective dye/salt separation and desalination. ACS Applied Materials & Interfaces 13 (46):55339–48. doi: 10.1021/acsami.1c16141.
  • Yang, G.-H., D.-D. Bao, D.-Q. Zhang, C. Wang, L.-L. Qu, and H.-T. Li. 2018. Removal of antibiotics from water with an all-carbon 3D nanofiltration membrane. Nanoscale Research Letters 13 (1):146. doi: 10.1186/s11671-018-2555-9.
  • Yang, T., H. Lin, K. P. Loh, and B. Jia. 2019. Fundamental transport mechanisms and advancements of graphene oxide membranes for molecular separation. Chemistry of Materials 31 (6):1829–46. doi: 10.1021/acs.chemmater.8b03820.
  • Yang, S., P. Huang, L. Peng, C. Cao, Y. Zhu, F. Wei, Y. Sun, and W. Song. 2016. Hierarchical flowerlike magnesium oxide hollow spheres with extremely high surface area for adsorption and catalysis. Journal of Materials Chemistry A 4 (2):400–6. doi: 10.1039/C5TA08542J.
  • Yoon, H. W., Y. H. Cho, and H. B. Park. 2016. Graphene-based membranes: Status and prospects. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 374 (2060):20150024. doi: 10.1098/rsta.2015.0024.
  • Yu, H., Y. He, G. Xiao, Y. Fan, J. Ma, Y. Gao, R. Hou, X. Yin, Y. Wang, and X. Mei. 2020. The roles of oxygen-containing functional groups in modulating water purification performance of graphene oxide-based membrane. Chemical Engineering Journal 389:124375. doi: 10.1016/j.cej.2020.124375.
  • Yu, W., L. Sisi, Y. Haiyan, and L. Jie. 2020. Progress in the functional modification of graphene/graphene oxide: A review. RSC Advances 10 (26):15328–45. doi: 10.1039/D0RA01068E.
  • Zhang, Q., X. Qian, K. H. Thebo, H.-M. Cheng, and W. Ren. 2018. Controlling reduction degree of graphene oxide membranes for improved water permeance. Science Bulletin 63 (12):788–94. doi: 10.1016/j.scib.2018.05.015.
  • Zhang, Z., L. Zou, C. Aubry, M. Jouiad, and Z. Hao. 2016. Chemically crosslinked rGO laminate film as an ion selective barrier of composite membrane. Journal of Membrane Science 515:204–11. doi: 10.1016/j.memsci.2016.05.054.
  • Zheng, S., Q. Tu, J. J. Urban, S. Li, and B. Mi. 2017. Swelling of graphene oxide membranes in aqueous solution: Characterization of interlayer spacing and insight into water transport mechanisms. ACS Nano 11 (6):6440–50. doi: 10.1021/acsnano.7b02999.
  • Zheng, B., X. Chu, H. Li, X. Wu, X. Zhao, and Y. Tian. 2021. Layered graphene oxide membranes functioned by amino acids for efficient separation of metal ions. Applied Surface Science 546:149145. doi: 10.1016/j.apsusc.2021.149145.
  • Zheng, B., X. Chu, Z. Peng, and Y. Tian. 2023. Improving the separation performance for heavy metals by optimizing the structure of multilayered GO membrane. Journal of Molecular Liquids 370:121071. doi: 10.1016/j.molliq.2022.121071.
  • Zhu, J., M. Tian, J. Hou, J. Wang, J. Lin, Y. Zhang, J. Liu, and B. Van der Bruggen. 2016. Surface zwitterionic functionalized graphene oxide for a novel loose nanofiltration membrane. Journal of Materials Chemistry A 4 (5):1980–90. doi: 10.1039/C5TA08024J.
  • Zhou, G.-J., G.-G. Ying, S. Liu, L.-J. Zhou, Z.-F. Chen, and F.-Q. Peng. 2014. Simultaneous removal of inorganic and organic compounds in wastewater by freshwater green microalgae. Environmental Science. Processes & Impacts 16 (8):2018–27. doi: 10.1039/C4EM00094C.
  • Zunita, M., R. Irawanti, T. A. Koesmawati, G. Lugito, and I. G. Wentena. 2020. Graphene oxide (Go) membrane in removing heavy metals from wastewater: A review. Chemical Engineering Transactions 82:415–20. doi: 10.3303/CET2082070.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.