72
Views
1
CrossRef citations to date
0
Altmetric
Immunoassay

Fluorescent Immunochromatographic Assay (FICA) for Monkeypox Virus

, , , , , & show all
Pages 2118-2131 | Received 09 Nov 2023, Accepted 21 Nov 2023, Published online: 02 Dec 2023

References

  • Bonilla-Aldana, D. K., and A. J. Rodriguez-Morales. 2022. Is monkeypox another reemerging viral zoonosis with many animal hosts yet to be defined? The Veterinary Quarterly 42 (1):148–50. doi: 10.1080/01652176.2022.2088881.
  • Bunge, E. M., B. Hoet, L. Chen, F. Lienert, H. Weidenthaler, L. R. Baer, and R. Steffen. 2022. The changing epidemiology of human monkeypox A potential threat? A systematic review. PLoS Neglected Tropical Diseases 16 (2):e0010141. doi: 10.1371/journal.pntd.0010141.
  • Carradori, D., K. Barreau, and J. Eyer. 2016. The carbocyanine dye DiD labels in vitro and in vivo neural stem cells of the subventricular zone as well as myelinated structures following in vivo injection in the lateral ventricle. Journal of Neuroscience Research 94 (2):139–48. doi: 10.1002/jnr.23694.
  • Chakraborty, C., M. Bhattacharya, S. S. Nandi, R. K. Mohapatra, K. Dhama, and G. Agoramoorthy. 2022. Appearance and re-appearance of zoonotic disease during the pandemic period: Long term monitoring and analysis of zoonosis is crucial to confirm the animal origin of SARS-CoV-2 and monkeypox virus. The Veterinary Quarterly 42 (1):119–24. doi: 10.1080/01652176.2022.2086718.
  • Chen, X. Y., X. M. Wang, Y. Fang, L. L. Zhang, M. Y. Zhao, and Y. Q. Liu. 2022. Long-lasting chemiluminescence-based POCT for portable and visual pathogenic detection and in situ inactivation. Analytical Chemistry 94 (23):8382–91. doi: 10.1021/acs.analchem.2c00877.
  • Davi, S. D., J. Kissenkötter, M. Faye, S. Böhlken Fascher, C. Stahl Hennig, O. Faye, O. Faye, A. A. Sall, M. Weidmann, O. G. Ademowo, et al. 2019. Recombinase polymerase amplification assay for rapid detection of Monkeypox virus. Diagnostic Microbiology and Infectious Disease 95 (1):41–5. doi: 10.1016/j.diagmicrobio.2019.03.015.
  • Deng, H. M., D. Chen, X. Y. Li, F. Yang, S. S. Liu, Y. Y. Sun, M. W. Shi, Z. Y. Bian, G. L. Tang, and Z. Y. Fan. 2022. Development of a colloidal gold immunochromatographic test strip for the rapid detection of iprodione. Analytical Methods 14 (43):4370–6. doi: 10.1039/d2ay01374f.
  • Deng, X. L., C. Wang, Y. Gao, J. W. Li, W. Wen, X. H. Zhang, and S. F. Wang. 2018. Applying strand displacement amplification to quantum dots-based fluorescent lateral flow assay strips for HIV-DNA detection. Biosensors & Bioelectronics 105 (105):211–7. doi: 10.1016/j.bios.2018.01.039.
  • Fang, J. H., S. Y. Li, X. X. Liu, W. X. He, L. Y. Li, J. Z. Zhang, C. G. Zhang, and K. F. Zhou. 2022. Development of a test strip for rapid detection of Gymnodinium catenatum. Environmental Monitoring and Assessment 195 (1):83. doi: 10.1007/s10661-022-10708-2.
  • Ghate, S. D., P. Suravajhala, P. Patil, R. K. Vangala, P. Shetty, and R. S. P. Rao. 2023. Molecular detection of monkeypox and related viruses: Challenges and opportunities. Virus Genes 59 (3):343–50. doi: 10.1007/s11262-023-01975-3.
  • Gong, Q. Z., C. L. Wang, X. Chuai, and S. D. Chiu. 2022. Monkeypox virus: A re-emergent threat to humans. Virologica Sinica 37 (4):477–82. doi: 10.1016/j.virs.2022.07.006.
  • Gong, X. Q., J. Cai, B. Zhang, Q. Zhao, J. F. Piao, W. P. Peng, W. C. Gao, D. M. Zhou, M. Zhao, and J. Chang. 2017. A review of fluorescent signal-based lateral flow immunochromatographic strips. Journal of Materials Chemistry. B 5 (26):5079–91. doi: 10.1039/c7tb01049d.
  • Hu, G. S., W. Sheng, S. J. Li, Y. Zhang, J. P. Wang, and S. Wang. 2017. Quantum dot based multiplex fluorescence quenching immune chromatographic strips for the simultaneous determination of sulfonamide and fluoroquinolone residues in chicken samples. RSC Advances 7 (49):31123–8. doi: 10.1039/C7RA01753G.
  • Huang, D. Z., H. J. Ying, D. N. Jiang, F. Liu, Y. Tian, C. L. Du, L. Q. Zhang, and X. Y. Pu. 2020. Rapid and sensitive detection of interleukin-6 in serum via time-resolved lateral flow immunoassay. Analytical Biochemistry 588:113468. doi: 10.1016/j.ab.2019.113468.
  • Iizuka, I., M. Saijo, T. Shiota, Y. Ami, Y. Suzaki, N. Nagata, H. Hasegawa, K. Sakai, S. Fukushi, T. Mizutani, et al. 2009. Loop-mediated isothermal amplification-based diagnostic assay for monkeypox virus infections. Journal of Medical Virology 81 (6):1102–8. doi: 10.1002/jmv.21494.
  • Jia, Y., H. Sun, J. P. Tian, Q. M. Song, and W. W. Zhang. 2021. Paper-based point-of-care testing of SARS-CoV-2. Frontiers in Bioengineering and Biotechnology 9:773304. doi: 10.3389/fbioe.2021.773304.
  • Jiao, X. S., T. Peng, Z. W. Liang, Y. L. Hu, B. Meng, Y. Zhao, J. Xie, X. Y. Gong, Y. Jiang, X. Fang, et al. 2022. Lateral flow immunoassay based on time-resolved fluorescence microspheres for rapid and quantitative screening CA199 in human serum. International Journal of Molecular Sciences 23 (17):9991. doi: 10.3390/ijms23179991.
  • Li, M., H. M. Wang, J. D. Sun, J. Ji, Y. L. Ye, X. Lu, Y. Z. Zhang, and X. L. Sun. 2021a. Rapid, on-site, and sensitive detection of aflatoxin M1 in milk products by using time-resolved fluorescence microsphere test strip. Food Control.121 (442):107616. doi: 10.1016/j.foodcont.2020.107616.
  • Li, X. M., J. Wang, C. Q. Yi, L. L. Jiang, J. X. Wu, X. M. Chen, X. Shen, Y. M. Sun, and H. T. Lei. 2019a. A smartphone-based quantitative detection device integrated with latex microsphere immunochromatography for on-site detection of zearalenone in cereals and feed. Sensors and Actuators B: Chemical 290:170–9. doi: 10.1016/j.snb.2019.03.108.
  • Li, X. M., X. Z. Wu, J. Wang, Q. C. Hua, J. X. Wu, X. Shen, Y. M. Sun, and H. T. Lei. 2019b. Three lateral flow immunochromatographic assays based on different nanoparticle probes for on-site detection of tylosin and tilmicosin in milk and pork. Sensors and Actuators B: Chemical 301:127059. doi: 10.1016/j.snb.2019.127059.
  • Li, X., M. X. M. Chen, J. X. Wu, Z. W. Liu, J. Wang, C. P. Song, S. J. Zhao, H. T. Lei, and Y. M. Sun. 2021b. Portable, rapid, and sensitive time-resolved fluorescence immunochromatography for on-site detection of dexamethasone in milk and pork. Foods (Basel, Switzerland) 10 (6):1339. doi: 10.3390/foods10061339.
  • Li, Y., H. Zhao, K. Wilkins, C. Hughes, and I. K. Damon. 2010. Real-time PCR assays for the specific detection of monkeypox virus West African and Congo Basin strain DNA. Journal of Virological Methods 169 (1):223–7. doi: 10.1016/j.jviromet.2010.07.012.
  • Li, Z. H., Q. Y. Liu, Y. F. Li, W. Yuan, and F. Y. Li. 2021c. One-step polymerized lanthanide-based polystyrene microsphere for sensitive lateral flow immunoassay. Journal of Rare Earths 39 (1):11–8. doi: 10.1016/j.jre.2020.06.020.
  • Liu, L. Q., S. Suryoprabowo, Q. K. Zheng, S. S. Song, and H. Kuang. 2017. Rapid detection of aldicarb in cucumber with an immunochromatographic test strip. Food and Agricultural Immunology 28 (3):427–38. doi: 10.1080/09540105.2017.1293015.
  • Liu, Z. W., Q. C. Hua, J. Wang, Z. Q. Liang, J. H. Li, J. X. Wu, X. Shen, H. T. Lei, and X. M. Li. 2020. A smartphone-based dual detection mode device integrated with two lateral flow immunoassays for multiplex mycotoxins in cereals. Biosensors & Bioelectronics 158:112178. doi: 10.1016/j.bios.2020.112178.
  • Mao, L. J., J. X. Ying, B. J. M. Selekon, E. Gonofio, X. X. Wang, E. Nakoune, G. Wong, and N. Berthet. 2022. Development and characterization of recombinase-based isothermal amplification assays (RPA/RAA) for the rapid detection of monkeypox virus. Viruses 14 (10):2112. doi: 10.3390/v14102112.
  • Mitjà, O., D. Ogoina, B. K. Titanji, C. Galvan, J. J. Muyembe, M. Marks, and C. M. Orkin. 2023. Monkeypox. Lancet (London, England) 401 (10370):60–74. doi: 10.1016/s0140-6736(22)02075-x.
  • Peng, C., J.-F. Liang, L.-F. Jiang, H.-Y. Deng, K. Liang, B.-B. Zhang, J.-J. Lin, Y.-T. Yi, P.-Y. Chen, Y.-M. Chen, et al. 2022. Carboxylated fluorescent microsphere based immunochromatographic test strip enabled sensitive and quantitative on-site detection for florfenicol in eggs. Journal of Pharmaceutical and Biomedical Analysis 219:114946. doi: 10.1016/j.jpba.2022.114946.
  • Schnierle, B. S. 2022. Monkeypox goes North: Ongoing worldwide monkeypox infections in humans. Viruses 14 (9):1874. doi: 10.3390/v14091874.
  • Sun, J. D., L. Z. Wang, J. J. Shao, D. D. Yang, X. R. Fu, and X. L. Sun. 2021. One-step time-resolved fluorescence microsphere immunochromatographic test strip for quantitative and simultaneous detection of DON and ZEN. Analytical and Bioanalytical Chemistry 413 (26):6489–502. doi: 10.1007/s00216-021-03612-0.
  • Thornhill, J. P., S. Barkati, S. Walmsley, J. Rockstroh, A. Antinori, L. B. Harrison, R. Palich, A. Nori, I. Reeves, M. S. Habibi, et al. 2022. Monkeypox virus infection in humans across 16 countries—April–June 2022. The New England Journal of Medicine 387 (8):679–91. doi: 10.1056/NEJMoa2207323.
  • Wang, C., X. M. Li, T. Peng, Z. H. Wang, K. Wen, and H. Y. Jiang. 2017. Latex bead and colloidal gold applied in a multiplex immunochromatographic assay for high-throughput detection of three classes of antibiotic residues in milk. Food Control.77:1–7. doi: 10.1016/j.foodcont.2017.01.016.
  • Wei, Y. Q., B. Z. Yang, Y. L. Li, Y. C. Duan, D. Y. Tian, B. X. He, C. F. Chen, W. J. Liu, and L. M. Yang. 2020. A rapid and quantitative fluorescent microsphere immunochromatographic strip test for detection of antibodies to porcine reproductive and respiratory syndrome virus. Journal of Veterinary Science 21 (4):e68. doi: 10.4142/jvs.2020.21.e68.
  • Xie, K. X., H. Chen, B. Peng, Z. Y. Jin, W. Xiao, Z. G. Zhang, B. Y. Huang, Q. F. Song, and Y. Tang. 2020a. On-site determination of classical swine fever virus (CSFV) by a fluorescent microsphere-based lateral flow immunoassay strip (FM-LFIAs) based on monoclonal antibodies. Analytical Letters 54 (14):2347–62. doi: 10.1080/00032719.2020.1860998.
  • Xie, Y., Q. M. Kou, Q. Sun, Y. R. Wang, Y. Cao, and T. Le. 2020b. Development and validation of an immunochromatography test strip for rapid detection of pyrimethanil residues. Food and Agricultural Immunology 31 (1):393–405. doi: 10.1080/09540105.2020.1733496.
  • Xu, X. X., W. L. Ge, S. Suryoprabowo, X. Guo, J. P. Zhu, L. Q. Liu, C. L. Xu, and H. Kuang. 2022. Fluorescence-based immunochromatographic test strip for the detection of hyoscyamine. The Analyst 147 (2):293–302. doi: 10.1039/d1an01973b.
  • Yang, Y. J., C. H. Li, W. Wang, T. T. Dong, Y. H. Xiong, J. Shen, and W. H. Lai. 2015. A fluorescence immunochromatographic assay for rapid and sensitive detection of human prealbumin in serum. Analytical Methods 7 (20):8683–8. doi: 10.1039/C5AY01659B.
  • Yang, Z. L. 2022. Monkeypox: A potential global threat? Journal of Medical Virology 94 (9):4034–6. doi: 10.1002/jmv.27884.
  • Ye, Y. W., T. T. Wu, X. T. Jiang, J. X. Cao, X. Ling, Q. S. Mei, H. Chen, D. M. Han, J. J. Xu, and Y. Z. Shen. 2020. Portable smartphone-based qds for the visual onsite monitoring of fluoroquinolone antibiotics in actual food and environmental samples. ACS Applied Materials & Interfaces 12 (12):14552–62. doi: 10.1021/acsami.9b23167.
  • Yrad, F. M., J. M. Castanares, and E. C. Alocilja. 2019. Visual detection of Dengue-1 RNA using gold nanoparticle-based lateral flow biosensor. Diagnostics (Basel, Switzerland) 9 (3):74. doi: 10.3390/diagnostics9030074.
  • Yu, C., L. L. Zuo, J. Miao, L. J. Mao, B. Selekon, E. Gonofio, E. Nakoune, N. Berthet, and G. Wong. 2022. Development of a novel loop-mediated isothermal amplification method for the rapid detection of monkeypox virus infections. Viruses 15 (1):84. doi: 10.3390/v15010084.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.