35
Views
0
CrossRef citations to date
0
Altmetric
Liquid Chromatography

Determination of Triazole Fungicides by Ultra-High Performance Liquid Chromatography–Tandem Mass Spectrometry (UHPLC–MS/MS) with a Lipophilicity-Matched Separation Strategy for Reducing Matrix Effects

, , , , , & show all
Pages 2132-2145 | Received 27 May 2023, Accepted 21 Nov 2023, Published online: 28 Nov 2023

References

  • Anagnostopoulos, C., A. Bourmpopoulou, and G. Miliadis. 2013. Development and validation of a dispersive solid phase extraction liquid chromatography mass spectrometry method with electrospray ionization for the determination of multiclass pesticides and metabolites in meat and milk. Analytical Letters 46 (16):2526–41. doi: 10.1080/00032719.2013.803251.
  • Cao, J., Y. Zheng, A. Kaium, X. Liu, J. Xu, F. Dong, X. Wu, and Y. Zheng. 2019. A comparative study of biochar, multiwalled carbon nanotubes and graphitized carbon black as QuEChERS absorbents for the rapid determination of six triazole fungicides by UPLC-MS/MS. International Journal of Environmental Analytical Chemistry 99 (3):209–23. doi: 10.1080/03067319.2019.1586892.
  • Castillo, M. E. H., E. L. Rodríguez, R. L. Ruiz, R. R. González, and A. G. Frenich. 2022. Targeted and untargeted analysis of triazole fungicides and their metabolites in fruits and vegetables by UHPLC-orbitrap-MS2. Food Chemistry 368:130860. doi: 10.1016/j.foodchem.2021.130860.
  • Cevc, G., I. Berts, S. F. Fischer, J. O. Rädler, and B. Nickel. 2018. Nanostructures in n-octanol equilibrated with additives and/or water. Langmuir: The ACS Journal of Surfaces and Colloids 34 (21):6285–95. doi: 10.1021/acs.langmuir.8b00142.
  • Chambers, E., D. M. W. Diehl, Z. Lu, and J. R. Mazzeo. 2007. Systematic and comprehensive strategy for reducing matrix effects in LC/MS/MS analyses. Journal of Chromatography B, Analytical Technologies in the Biomedical and Life Sciences 852 (1-2):22–34. doi: 10.1016/j.jchromb.2006.12.030.
  • Chawla, S., H. K. Patel, H. N. Gor, K. M. Vaghela, P. P. Solanki, and P. G. Shah. 2017. Evaluation of matrix effects in multiresidue analysis of pesticide residues in vegetables and spices by LC-MS/MS. Journal of AOAC International 100 (3):616–23. doi: 10.5740/jaoacint.17-0048.
  • Chen, J. N., Y. J. Lian, Y. R. Zhou, M. H. Wang, X. Q. Zhang, J. H. Wang, Y. N. Wu, and M. L. Wang. 2019. Determination of 107 pesticide residues in wolfberry with acetate-buffered salt extraction and sin-QuEChERS nano column purification coupled with ultra performance liquid chromatography tandem mass spectrometry. Molecules (Basel, Switzerland) 24 (16):2918. doi: 10.3390/molecules24162918.
  • Chen, Z., and S. G. Weber. 2007. High-throughput method for lipophilicity measurement. Analytical Chemistry 79 (3):1043–9. doi: 10.1021/ac061649a.
  • Chiarello, M., and S. Moura. 2018. Determination of pesticides in organic carrots by high-performance liquid chromatography/high-resolution mass spectrometry. Analytical Letters 51 (16):2563–76. doi: 10.1080/00032719.2018.1434664.
  • Cortese, M., M. R. Gigliobianco, F. Magnoni, R. Censi, and P. D. Martino. 2020. Compensate for or minimize matrix effects? Strategies for overcoming matrix effects in liquid chromatography-mass spectrometry technique: A tutorial review. Molecules (Basel, Switzerland) 25 (13):3047–77. doi: 10.3390/molecules25133047.
  • Ferrer, C., A. Lozano, A. Agüera, A. J. Girón, and A. R. F. Alba. 2011. Overcoming matrix effects using the dilution approach in multiresidue methods for fruits and vegetables. Journal of Chromatography A 1218 (42):7634–9. doi: 10.1016/j.chroma.2011.07.033.
  • Golge, O., and B. Kabak. 2015. Evaluation of QuEChERS sample preparation and liquid chromatography-triple-quadrupole mass spectrometry method for the determination of 109 pesticide residues in tomatoes. Food Chemistry 176:319–32. doi: 10.1016/j.foodchem.2014.12.083.
  • Guo, J., M. Tong, J. Tang, H. Bian, X. Wan, L. He, and R. Hou. 2019. Analysis of multiple pesticide residues in polyphenol-rich agricultural products by UPLC-MS/MS using a modified QuEChERS extraction and dilution method. Food Chemistry 274:452–9. doi: 10.1016/j.foodchem.2018.08.134.
  • Hu, S., M. Zhao, Q. Mao, C. Fang, D. Chen, and P. Yan. 2019. Rapid one-step cleanup method to minimize matrix effects for residue analysis of alkaline pesticides in tea using liquid chromatography-high resolution mass spectrometry. Food Chemistry 299:125146. doi: 10.1016/j.foodchem.2019.125146.
  • Kecojević, I., S. Đekić, M. Lazović, D. Mrkajić, R. Baošić, and A. Lolić. 2021. Evaluation of LC-MS/MS methodology for determination of 179 multi-class pesticides in cabbage and rice by modified QuEChERS extraction. Food Control.123:107693. doi: 10.1016/j.foodcont.2020.107693.
  • Kim, Y. A., A. M. A. E. Aty, M. M. Rahman, J. H. Jeong, H.-C. Shin, J. Wang, S. S. Shin, and J. H. Shim. 2018. Method development, matrix effect, and risk assessment of 49 multiclass pesticides in kiwifruit using liquid chromatography coupled to tandem mass spectrometry. Journal of Chromatography B, Analytical Technologies in the Biomedical and Life Sciences 1076:130–8. doi: 10.1016/j.jchromb.2018.01.015.
  • Kittlaus, S., J. Schimanke, G. Kempe, and K. Speer. 2011. Assessment of sample cleanup and matrix effects in the pesticide residue analysis of foods using postcolumn infusion in liquid chromatography–tandem mass spectrometry. Journal of Chromatography A 1218 (46):8399–410. doi: 10.1016/j.chroma.2011.09.054.
  • Kwon, H., S. J. Lehotay, and L. Geis-Asteggiante. 2012. Variability of matrix effects in liquid and gas chromatography-mass spectrometry analysis of pesticide residues after QuEChERS sample preparation of different food crops. Journal of Chromatography A 1270:235–45. doi: 10.1016/j.chroma.2012.10.059.
  • Liu, G., M. Tian, M. Lu, W. Shi, L. Li, Y. Gao, T. Li, and D. Xu. 2021. Preparation of magnetic MOFs for use as a solid-phase extraction absorbent for rapid adsorption of triazole pesticide residues in fruits juices and vegetables. Journal of Chromatography B, Analytical Technologies in the Biomedical and Life Sciences 1166:122500. doi: 10.1016/j.jchromb.2020.122500.
  • Liu, Z., J. Wang, Z. Wang, H. Xu, S. Di, H. Zhao, P. Qi, and X. Wang. 2022. Development of magnetic solid phase extraction using magnetic amphiphilic polymer for sensitive analysis of multi-pesticides residue in honey. Journal of Chromatography A 1664:462789. doi: 10.1016/j.chroma.2021.462789.
  • Lozowicka, B., G. Ilyasova, P. Kaczynski, M. Jankowska, E. Rutkowska, I. Hrynko, P. Mojsak, and J. Szabunko. 2016. Multi-residue methods for the determination of over four hundred pesticides in solid and liquid high sucrose content matrices by tandem mass spectrometry coupled with gas and liquid chromatograph. Talanta 151:51–61. doi: 10.1016/j.talanta.2016.01.020.
  • Marín, J. M., E. G. Lor, J. V. Sancho, F. J. López, and F. Hernández. 2009. Application of ultra-high-pressure liquid chromatography–tandem mass spectrometry to the determination of multi-class pesticides in environmental and wastewater samples: Study of matrix effects. Journal of Chromatography A 1216 (9):1410–20. doi: 10.1016/j.chroma.2008.12.094.
  • Mesa, M. H., and A. M. G. Campaña. 2020. Determination of sulfonylurea pesticide residues in edible seeds used as nutraceuticals by QuEChERS in combination with ultra-high-performance liquid chromatography-tandem mass spectrometry. Journal of Chromatography A 1617:460831. doi: 10.1016/j.chroma.2019.460831.
  • Miao, Q., J. Wang, J. Nie, H. Wu, Y. Liu, Z. Li, and M. Qian. 2016. Magnetic dispersive solid-phase extraction based on a novel adsorbent for the detection of triazole pesticide residues in honey by HPLC-MS/MS. Analytical Methods 8 (26):5296–303. doi: 10.1039/C6AY00376A.
  • Nasiri, A., R. Jahani, S. Mokhtari, H. Yazdanpanah, B. Daraei, M. Faizi, and F. Kobarfard. 2021. Overview, consequences, and strategies for overcoming matrix effects in LC-MS analysis: A critical review. The Analyst 146 (20):6049–63. doi: 10.1039/D1AN01047F.
  • Ortega, F. J. L., J. R. Molina, S. Brandt, A. Schütz, B. G. López, A. M. Díaz, J. F. G. Reyes, and J. Franzke. 2018. Use of dielectric barrier discharge ionization to minimize matrix effects and expand coverage in pesticide residue analysis by liquid chromatography-mass spectrometry. Analytica Chimica Acta 1020:76–85. doi: 10.1016/j.aca.2018.02.077.
  • Peng, J., Y. Xiao, H. Cao, L. Zhang, and J. Tang. 2013. Determination of pirimicarb and paclobutrazol pesticide residues in food by HPLC-ESI-MS with a novel sample preparation method. Analytical Letters 46 (1):35–47. doi: 10.1080/00032719.2012.708955.
  • Qin, J., Y. Fu, Q. Lu, X. Dou, J. Luo, and M. Yang. 2021. Matrix-matched monitoring ion selection strategy for improving the matrix effect and qualitative accuracy in pesticide detection based on UFLC-ESI-MS/MS: A case of Chrysanthemum. Microchemical Journal 160:105681. doi: 10.1016/j.microc.2020.105681.
  • Qin, Y., P. Zhao, S. Fan, Y. Han, Y. Li, N. Zou, S. Song, Y. Zhang, F. Li, X. Li, et al. 2015. The comparison of dispersive solid phase extraction and multi-plug filtration cleanup method based on multi-walled carbon nanotubes for pesticides multi-residue analysis by liquid chromatography tandem mass spectrometry. Journal of Chromatography A 1385:1–11. doi: 10.1016/j.chroma.2015.01.066.
  • Rutkowska, E., B. Łozowicka, and P. Kaczyński. 2019. Three approaches to minimize matrix effects in residue analysis of multiclass pesticides in dried complex matrices using gas chromatography tandem mass spectrometry. Food Chemistry 279:20–9. doi: 10.1016/j.foodchem.2018.11.130.
  • Song, N. E., J. Y. Lee, A. R. Mansur, H. W. Jang, M. C. Lim, Y. Lee, M. Yoo, and T. G. Nam. 2019. Determination of 60 pesticides in hen eggs using the QuEChERS procedure followed by LC-MS/MS and GC-MS/MS. Food Chemistry 298:125050. doi: 10.1016/j.foodchem.2019.125050.
  • Stahnke, H., S. Kittlaus, G. Kempe, and L. Alder. 2012. Reduction of matrix effects in liquid chromatography-electrospray ionization-mass spectrometry by dilution of the sample extracts: How much dilution is needed? Analytical Chemistry 84 (3):1474–82. doi: 10.1021/ac202661j.
  • Tian, F., C. Qiao, J. Luo, L. Guo, T. Pang, R. Pang, J. Li, C. Wang, R. Wang, and H. Xie. 2020. Development and validation of a method for the analysis of five diamide insecticides in edible mushrooms using modified QuEChERS and HPLC-MS/MS. Food Chemistry 333:127468. doi: 10.1016/j.foodchem.2020.127468.
  • Tian, F. J., C. K. Qiao, C. X. Wang, J. Luo, L. L. Guo, T. Pang, J. Li, R. P. Wang, R. L. Pang, and H. Z. Xie. 2021. Simultaneous determination of spirodiclofen, spiromesifen, and spirotetramat and their relevant metabolites in edible fungi using ultra-performance liquid chromatography/tandem mass spectrometry. Scientific Reports 11 (1):1547. doi: 10.1038/s41598-021-81013-0.
  • Wang, S., M. Li, X. Li, X. Li, X. Li, S. Li, Q. Zhang, and H. Li. 2020. A functionalized carbon nanotube nanohybrids-based QuEChERS method for detection of pesticide residues in vegetables and fruits. Journal of Chromatography A 1631:461526. doi: 10.1016/j.chroma.2020.461526.
  • Yang, P., J. S. Chang, J. W. Wong, K. Zhang, A. J. Krynitsky, M. Bromirski, and J. Wang. 2015. Effect of sample dilution on matrix effects in pesticide analysis of several matrices by liquid chromatography-high resolution mass spectrometry. Journal of Agricultural and Food Chemistry 63 (21):5169–77. doi: 10.1021/jf505168v.
  • Zhang, R., Z. Tan, K. Huang, Y. Wen, X. Li, J. Zhao, and C. Liu. 2019. A vortex-assisted dispersive liquid-liquid microextraction followed by UPLC-MS/MS for simultaneous determination of pesticides and aflatoxins in herbal tea. Molecules (Basel, Switzerland) 24 (6):1029. doi: 10.3390/molecules24061029.
  • Zhang, Y., Q. Li, B. Dai, S. Zhou, M. Zhang, H. Han, and H. Qiu. 2018. A versatile polar-embedded polyphenyl phase for multimodal separation in liquid chromatography. Journal of Chromatography A 1553:81–9. doi: 10.1016/j.chroma.2018.04.025.
  • Zhao, J., J. Pu, X. Wu, B. Chen, Y. He, Y. Zhang, and B. Han. 2021. Evaluation of the matrix effect of pH value and sugar content on the analysis of pesticides in tropical fruits by UPLC-MS/MS. Microchemical Journal 168:106375. doi: 10.1016/j.microc.2021.106375.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.