153
Views
0
CrossRef citations to date
0
Altmetric
Agricultural Analysis

Novel Label-Free GelRed-Aptamer Sensor for the Rapid Determination of Deoxynivalenol in Wheat Caused by Fusarium graminearum

, , , , & ORCID Icon
Pages 2482-2496 | Received 10 Oct 2023, Accepted 16 Dec 2023, Published online: 27 Dec 2023

References

  • Chen, L., F. Wen, M. Li, X. Guo, S. Li, N. Zheng, and J. Wang. 2017. A simple aptamer-based fluorescent assay for the detection of aflatoxin B1 in infant rice cereal. Food Chemistry 215:377–82. doi: 10.1016/j.foodchem.2016.07.148.
  • Chen, Y., H. C. Kistler, and Z. Ma. 2019. Fusarium graminearum trichothecene mycotoxins: Biosynthesis, regulation, and management. Annual Review of Phytopathology 57 (1):15–39. doi: 10.1146/annurev-phyto-082718-100318.
  • Drolet, D. W., R. D. Jenison, D. E. Smith, D. Pratt, and B. J. Hicke. 1999. A high throughput platform for systematic evolution of ligands by exponential enrichment (SELEX). Combinatorial Chemistry & High Throughput Screening 2 (5):271–8. doi: 10.2174/1386207302666220204195705.
  • Ediage, E. N., J. D. D. Mavungu, I. Y. Goryacheva, C. V. Peteghem, and S. D. Saeger. 2012. Multiplex flow-through immunoassay formats for screening of mycotoxins in a variety of food matrices. Analytical and Bioanalytical Chemistry 403 (1):265–78. doi: 10.1007/s00216-012-5803-3.
  • Huang, X., X. Huang, J. Xie, X. Li, and Z. Huang. 2020. Rapid simultaneous detection of fumonisin B1 and deoxynivalenol in grain by immunochromatographic test strip. Analytical Biochemistry 606:113878. doi: 10.1016/j.ab.2020.113878.
  • Han, L., Y. T. Li, J. Q. Jiang, R. F. Li, G. Y. Fan, J. M. Lv, Y. Zhou, W. J. Zhang, and Z. L. Wang. 2019. Development of a direct competitive ELISA kit for detecting deoxynivalenol contamination in wheat. Molecules (Basel, Switzerland) 25 (1):50. doi: 10.3390/molecules25010050.
  • Hedayati, N., S. M. Taghdisi, R. Yazdian-Robati, A. Mansouri, K. Abnous, and S. Ahmad Mohajeri. 2021. Selection of DNA aptamers for tramadol through the systematic evolution of ligands by exponential enrichment method for fabrication of a sensitive fluorescent aptasensor based on graphene oxide. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 259:119840. doi: 10.1016/j.saa.2021.119840.
  • Hsueh, C. C., Y. Liu, and M. S. Freund. 1999. Indirect electrochemical detection of type-B trichothecene mycotoxins. Analytical Chemistry 71 (18):4075–80. doi: 10.1021/ac981114k.
  • Plattner, R. D. 1999. HPLC/MS analysis of fusarium mycotoxins, fumonisins and deoxynivalenol. Natural Toxins 7 (6):365–70. doi: 10.1002/1522-7189(199911/12)7:6<365::AID-NT85>3.0.CO;2-0.
  • Ji, D., H. Wang, J. Ge, L. Zhang, J. Li, D. Bai, J. Chen, and Z. Li. 2017. Label-free and rapid detection of ATP based on structure switching of aptamers. Analytical Biochemistry 526:22–8. doi: 10.1016/j.ab.2017.03.011.
  • Ji, F., H. Li, J. Xu, and J. Shi. 2011. Enzyme-linked immunosorbent-assay for deoxynivalenol. Toxins 3 (8):968–78. doi: 10.3390/toxins3080968.
  • Gamella, M., C. Bueno-Díaz, V. Ruiz-Valdepeñas Montiel, E. Povedano, A. J. Reviejo, M. Villalba, S. Campuzano, and J. M. Pingarrón. 2020. First electrochemical immunosensor for the rapid detection of mustard seeds in plant food extracts. Talanta 219:121247. doi: 10.1016/j.talanta.2020.121247.
  • Guo, R., Y. Ji, J. Chen, J. Ye, B. Ni, L. Li, and Y. Yang. 2023. Multicolor visual detection of deoxynivalenol in grain based on magnetic immunoassay and enzymatic etching of plasmonic gold nanobipyramids. Toxins 15 (6):351. doi: 10.3390/toxins15060351.
  • Malvano, F., R. Pilloton, A. Rubino, and D. Albanese. 2022. Rapid detection of deoxynivalenol in dry pasta using a label-free immunosensor. Biosensors 12 (4):240. doi: 10.3390/bios12040240.
  • Niknejad, F., L. Escrivá, K. B. Adel Rad, M. Khoshnia, F. J. Barba, and H. Berrada. 2021. Biomonitoring of multiple mycotoxins in urine by GC-MS/MS: A pilot study on patients with esophageal cancer in Golestan province, Northeastern Iran. Toxins 13 (4):243. doi: 10.3390/toxins13040243.
  • Ran, R., C. Wang, Z. Han, A. Wu, D. Zhang, and J. Shi. 2013. Determination of deoxynivalenol (DON) and its derivatives: Current status of analytical methods. Food Control 34 (1):138–48. doi: 10.1016/j.foodcont.2013.04.026.
  • Rausch, A. K., R. Brockmeyer, and T. Schwerdtle. 2021. Development, validation, and application of a multi-method for the determination of mycotoxins, plant growth regulators, tropane alkaloids, and pesticides in cereals by two-dimensional liquid chromatography tandem mass spectrometry. Analytical and Bioanalytical Chemistry 413 (11):3041–54. doi: 10.1007/s00216-021-03239-1.
  • Rodríguez-Carrasco, Y., J. C. Moltó, J. Mañes, and H. Berrada. 2017. Development of microextraction techniques in combination with GC-MS/MS for the determination of mycotoxins and metabolites in human urine. Journal of Separation Science 40 (7):1572–82. doi: 10.1002/jssc.201601131.
  • Stukenbrock, E., and S. Gurr. 2023. Address the growing urgency of fungal disease in crops. Nature 617 (7959):31–4. doi: 10.1038/d41586-023-01465-4.
  • Subak, H., G. Selvolini, M. Macchiagodena, D. Ozkan-Ariksoysal, M. Pagliai, P. Procacci, and G. Marrazza. 2021. Mycotoxins aptasensing: From molecular docking to electrochemical detection of deoxynivalenol. Bioelectrochemistry (Amsterdam, Netherlands) 138:107691. doi: 10.1016/j.bioelechem.2020.107691.
  • Sun, J., L. Wang, J. Shao, D. Yang, X. Fu, and X. Sun. 2021. One-step time-resolved fluorescence microsphere immunochromatographic test strip for quantitative and simultaneous detection of DON and ZEN. Analytical and Bioanalytical Chemistry 413 (26):6489–502. doi: 10.1007/s00216-021-03612-0.
  • Valera, E., R. García-Febrero, C. T. Elliott, F. Sánchez-Baeza, and M. P. Marco. 2019. Electrochemical nanoprobe-based immunosensor for deoxynivalenol mycotoxin residues analysis in wheat samples. Analytical and Bioanalytical Chemistry 411 (9):1915–26. doi: 10.1007/s00216-018-1538-0.
  • Wang, L. S., Y. Zhang, M. Q. Zhang, D. C. Gong, Y. Z. Mei, and C. C. Dai. 2023. Engineered Phomopsis liquidambaris with Fhb1 and Fhb7 enhances resistance to Fusarium graminearum in wheat. Journal of Agricultural and Food Chemistry 71 (3):1391–404. doi: 10.1021/acs.jafc.2c06742.
  • Wei, T., P. Ren, L. Huang, Z. Ouyang, Z. Wang, X. Kong, T. Li, Y. Yin, Y. Wu, and Q. He. 2019. Simultaneous detection of aflatoxin B1, ochratoxin A, zearalenone and deoxynivalenol in corn and wheat using surface plasmon resonance. Food Chemistry 300:125176. doi: 10.1016/j.foodchem.2019.125176.
  • Wang, J., S. Li, J. Wei, T. Jiao, Q. Chen, M. Oyama, Q. Chen, and X. Chen. 2023. Screening-capture-integrated electrochemiluminescent aptasensor based on mesoporous silica nanochannels for the ultrasensitive detection of deoxynivalenol in wheat. Journal of Agricultural and Food Chemistry 71 (31):12052–60. doi: 10.1021/acs.jafc.3c03194.
  • Wu, L., Y. Wang, X. Xu, Y. Liu, B. Lin, M. Zhang, J. Zhang, S. Wan, C. Yang, and W. Tan. 2021. Aptamer-based detection of circulating targets for precision medicine. Chemical Reviews 121 (19):12035–105.
  • You, F., Z. Wen, R. Yuan, J. Qian, L. Long, and K. Wang. 2023. Sensitive and stable detection of deoxynivalenol based on electrochemiluminescence aptasensor enhanced by 0D/2D homojunction effect in food analysis. Food Chemistry 403:134397. doi: 10.1016/j.foodchem.2022.134397.
  • Yu, Q., H. Li, C. Li, S. Zhang, J. Shen, and Z. Wang. 2015. Gold nanoparticles-based lateral flow immunoassay with silver staining for simultaneous detection of fumonisin B1 and deoxynivalenol. Food Control 54:347–52. doi: 10.1016/j.foodcont.2015.02.019.
  • Yu, W., X. Lin, N. Duan, Z. Wang, and S. Wu. 2023. A fluorescence and surface-enhanced Raman scattering dual-mode aptasensor for sensitive detection of deoxynivalenol based on gold nanoclusters and silver nanoparticles modified metal-polydopamine framework. Analytica Chimica Acta 1244:340846. doi: 10.1016/j.aca.2023.340846.
  • Zhao, X., X. Dai, S. Zhao, X. Cui, T. Gong, Z. Song, H. Meng, X. Zhang, and B. Yu. 2021. Aptamer-based fluorescent sensors for the detection of cancer biomarkers. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 247:119038. doi: 10.1016/j.saa.2020.119038.
  • Zhao, X., X. Dai, S. Zhao, X. Cui, T. Gong, Z. Song, H. Meng, X. Zhang, and B. Yu. 2022. A novel bionic magnetic SERS aptasensor for the ultrasensitive detection of deoxynivalenol based on "dual antennae" nano-silver. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 247:119038. doi: 10.1016/j.saa.2020.119038.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.