Publication Cover
Applicable Analysis
An International Journal
Volume 93, 2014 - Issue 7
208
Views
7
CrossRef citations to date
0
Altmetric
Articles

Analysis of the Brinkman-Forchheimer equations with slip boundary conditions

&
Pages 1477-1494 | Received 08 Jun 2012, Accepted 15 Aug 2013, Published online: 16 Sep 2013

References

  • Girault V, Raviart P-A. Finite element methods for Navier-Stokes equations, theory and algorithms. Vol. 5, and Springer series in computational mathematics. Berlin: Springer-Verlag; 1986.
  • Fujita H. A mathematical analysis of motions of viscous incompressible fluid under leak or slip boundary conditions. Vol. 888, Mathematical fluid mechanics and modeling (Kyoto, 1994), RIMS Kōkyūroko. Kyoto: Kyoto University; 1994.
  • Fujita H, Kawarada H, Sasamoto A. Analytical and numerical approaches to stationary flow problems with leak and slip boundary conditions. In: T. Ushijima et al., Editors, Advances in numerical mathematics (Tokyo, 1994), Lect. Notes. Numer. Appl. Anal. Vol. 14, Kinokuniya; 1995. p.17–31.
  • Fujita H, Kawarada H. Variational inequalities for the Stokes equation with boundary conditions of friction type: and recent developments in domain decomposition methods and flow problems (Kyoto, 1996; Anacapri, 1996). GAKUTO Internat. Ser. Math. Sci. Appl. Vol. 11, Gakkōtosho; 1998. p.15–33.
  • Fujita H. Non-stationary Stokes flows under leak boundary conditions of friction type. J. Comput. Math. 2001;19:1–8.
  • Fujita H. Variational inequalities and nonlinear semi-groups applied to certain nonlinear problems for the Stokes equation, In: H. Fujita et al., Editor. Tosio Kato’s method and principle for evolution equations in mathematical physics (Sapporo, 2001). Kyoto: RIMS; 2002. p. 70–85.
  • Fujita H. A coherent analysis of Stokes flows under boundary conditions of friction type. J. Comput. Appl. Math. 2002;149:57–69.
  • Duvaut G, Lions J-L. Inequalities in Mechanics and Physics, Grundlehren der Mathematischen Wissenschaften. Vol. 219. Berlin: Springer-Verlag; 1976.
  • Roux C. Steady Stokes flows with threshold slip boundary conditions. Math. Models Methods Appl. Sci. 2005;15:1141–1168.
  • Roux C, Tani A. Steady solutions of the Navier-Stokes equations with threshold slip boundary conditions. Math. Methods Appl. Sci. 2007;30:595–624.
  • Kawarda H, Fujita H, Suito H. Wave motion breaking upon the shore. Gakuto Int. Series. Math. Sci. Appl. 1998;11:145–159.
  • Suito H, Kawarda H. Numerical simulation of spilled oil by frictions domain method. JJIAM. 2004;11:219–136.
  • Herve H, Leger L. Flow with slip at the wall: from simple to complex fluids. C. R. Physique. 2003;4:241–249.
  • Rajagopal KR. On a hierarchy of approximate models for flows of incompressible fluids through porous solids. Math. Models Methods Appl. Sci. 2007;17:215–252.
  • Forchheimer P. Wasserbewegung durch Boden. Z. Ver. Deutch. Ing. 1901;45:1782–1788.
  • Brinkman HC. On the permeability of media consisting of closely packed porous particle. Appl. Sci. Res. A. 1947;1:81–86.
  • Nield DA. The limitations of the Brinkman-Forchheimer equation in modeling flow in a saturated porous medium and at an interface. Int. J. Heat Mass Tran. 1991;12:269–272.
  • Kladias N, Prasad V. Experimental verification of Darcy-Brinkman-Forchheimer flow model for natural convection in porous media. J. Thermophys. Heat Tr. 1991;5:560–576.
  • Celebi AO, Kalantarov VK, Ugurlu D. On the continuous dependence on coefficients of the Brinkman-Forchheimer equations. Appl. Math. Lett. 2006;19:801–807.
  • Payne LE, Straughan B. Stability in the initial time geometry problem for the Brinkman and Darcy equations of the flow in a porous media. J. Math. Pures Appl. 1996;9:225–271.
  • Ames KA, Straughan B. Non standard and improper posed problems, in: mathematics in science and engineering series. San Diego: Academic Press; 1997.
  • Ames KA, Payne LE. On the stabilizing against modeling errors in a penetrative convection problem for a porous medium. Math. Models Methods Appl. Sci. 1994;4:733–740.
  • Payne LE, Straughan B. Convergence and continuous dependence for the Brinkman-Forchheimer equations. Stud. Appl. Math. 1999;102:419–439.
  • Kuznetsov AV, Xiong M. Numerical simulation of the effect of thermal dispersion on forced convection in a circular duct partly filled with a Brinkman-Forchheimer porous medium. Int. J. Numer. Method. H. 1991;10:488–501.
  • Glowinski R, Lions J-L, Trémolières R. Numerical analysis of variational inequalities, Studies in mathematics and its applications. Vol. 8. Amsterdam-New York: North-Holland; 1981.
  • Glowinski R. Numerical methods for nonlinear variational problems, Springer series in computational physics. New York: Springer-Verlag; 1984.
  • Han W, Reddy BD. On the finite element method for mixed variational inequalities arising in elastoplasticity. SIAM J. Numer. Anal. 1995;32:1778–1807.
  • Han W, Shillor M, Sofonea M. Analysis and approximation of contact problems with adhesion or damage, pure and applied mathematics. Vol. 276. Boca Raton, FL: Chapman & Hall /CRC; 2006.
  • Gerbeau J-F, Leliévre T. Generalized Navier boundary condition and geometric conservation law for surface tension. Comput. Methods Appl. Mech. Engrg. 2009;198:644–656.
  • Kawarada H, Sasamoto A. Numerical simulation of the flow in a vessel with the free boundary and the sliding wall, in: nonlinear mathematical problems in industry (Iwaki, 1992). GAKUTO Internat. Ser. Math. Sci. Appl. Vol. 1, Gakkōtosho. Tokyo; 1993. p.175–187.
  • Li Y, Li K. Penalty finite element method for Stokes problem with nonlinear slip boundary conditions. Appl. Math. Comput. 2008;204:216–226.
  • Sasamoto A. Numerical analysis of Navier-Stokes equation with slip boundary wall and free boundary (in Japanese) [Ph.D. thesis]. Japan: Chiba University; 1992.
  • Lions JL. Quelques méthodes de résolution des problèmes aux limites non linéaires. Études mathématiques: Dunod; 1969.
  • Raviart PA, Thomas JM. Introduction a l’analyse numerique des equations aux derivees partielles. Paris: Masson; 1983.
  • Heywood JG, Rannacher R, Turek S. Artificial boundaries and flux and pressure conditions for the incompressible Navier-Stokes equations. Int. J. Numer. Methods Fluids. 1996;22:325–352.
  • Yosida K. Functional analysis: and Die Grundlehren der Mathematischen Wissenschaften Bd. 123. Berlin: Springer-Verlag; 1965.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.