Publication Cover
Applicable Analysis
An International Journal
Volume 93, 2014 - Issue 8
221
Views
27
CrossRef citations to date
0
Altmetric
Articles

A note on the solution map for the periodic Camassa–Holm equation

, &
Pages 1745-1760 | Received 13 Jul 2013, Accepted 19 Sep 2013, Published online: 18 Oct 2013

References

  • FokasA, FuchssteinerB. Symplectic structures, their Bäklund transformations and hereditray symmetries. Physica D. 1981;4:47–66.
  • CamassaR, HolmD. An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 1993;71:1661–1664.
  • ConstantinA, LannesD. The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations. Arch. Ration. Mech. Anal. 2009;192:165–186.
  • ConstantinA, McKeanHP. A shallow water equation on the circle. Comm. Pure Appl. Math. 1999;52:949–982.
  • ConstantinA. On the inverse spectral problem for the Camassa-Holm equation. J. Funct. Anal. 1998;155:352–363.
  • ConstantinA. Quasi-periodicity with respect to time of spatially periodic finite-gap solutions of the Camassa-Holm equation. Bull. Sci. Math. 1998;122:487–494.
  • GesztesyF, HoldenH. Algebro-geometric solutions of the Camassa-Holm hierarchy. Rev. Mat. Iberoamericana. 2003;19:73–142.
  • LenellsJ. The correspondence between KdV and Camassa-Holm. Int. Math. Res. Not.2004;71: 3797–3811.
  • ConstantinA, EscherJ. Wave breaking for nonlinear nonlocal shallow water equations. Acta Math. 1998;181:229–243.
  • KenigC, PonceG, VegaL. Well-posedness and scattering results for the generalized Korteweg-de Vries equation via contraction principle. Commun. Pure Appl. Math. 1993;46:527–620.
  • WhithamG. Linear and nonlinear waves. New York: J. Wiley Sons; 1980. p. 477.
  • ConstantinA. The trajectories of particles in Stokes waves. Invent. Math. 2006;166:523–535.
  • ConstantinA, EscherJ. Particle trajectories in solitary water waves. Bull. Amer. Math. Soc. 2007;44:423–431.
  • ConstantinA, EscherJ. Analyticity of periodic traveling free surface water waves with vorticity. Ann. of Math. 2011;173:559–568.
  • ConstantinA. On the Cauchy problem for the periodic Camassa-Holm equation. J. Diff. Eqns. 1997;10:218–235.
  • ConstantinA, EscherJ. Well-posedness, global existence and blow-up phenomena for a periodic quasi-linear hyperbolic equation. Comm. Pure Appl. Math. 1998;51:475–504.
  • MisiolekG. Classical solutions of the periodic Camassa-Holm equation. Geom. Funct. Anal. 2002;12:1080–1104.
  • HimonasA, KenigC, MisiołekG. Non-uniform dependence for the periodic CH equation. Commun. Partial Diff. Eqns. 2010;35:1145–1162.
  • BressanA, ConstantinA. Global conservative solutions of the Camassa-Holm equation. Arch. Ration. Mech. Anal. 2007;183:215–239.
  • BressanA, ConstantinA. Global dissipative solutions of the Camassa-Holm equation. Anal. Appl. 2007;5:1–27.
  • HoldenH, RaynaudX. Global conservative solutions of the Camassa-Holm equation–a Lagrangian point of view. Commun. Partial Diff. Eqns. 2007;32:1511–1549.
  • HoldenH, RaynaudX. Dissipative solutions for the Camassa-Holm equation. Discrete Contin. Dyn. Syst. 2009;24:1047–1112.
  • HimonasA, KenigC. Non-uniform dependence on initial data for the CH equation on the line. Differ. Integral Equat. 2009;22:201–224.
  • ConstantinA, StraussWA. Stability of peakons. Comm. Pure Appl. Math. 2000;53:603–610.
  • LenellsJ. A variational approach to the stability of periodic peakons. J. Nonlinear Math. Phys. 2004;11:151–163.
  • ConstantinA, MolinetL. Orbital stability of solitary waves for a shallow water equation. Physica D. 2001;157:75–89.
  • KatoT. Quasi-linear equations of evolution with applications to partial differential equations. Vol. 448, In: Spectral theory and differential equations. Berlin: Springer-Verlag; 1975. p. 25–70.
  • TaoT. Global well-posedness of the Benjamin-ono equation in H1(ℝ). J. Hyperbolic Diff. Equ. 2004;1:27–49.
  • HerrS, IonescuAD, KenigCE, KochH. A para-differential renormalization technique for nonlinear dispersive equations. Comm. Partial. Diff. Eqns. 2010;35:1827–1875.
  • DavidsonM. Continuity properties of the solution map for the generalized reduced Ostrovsky equation. J. Diff. Eqns. 2012;252:3797–3815.
  • KarapetyanD.On the well-posedness of the hyperelastic rod equation [Ph.D. thesis]. University of Notre Dame; 2012.
  • TriebelH. Theory of function spaces. Basel: Birkhäuser; 1983.
  • HimonasA, HollimanC. The Cauchy problem for the Novikov equation. Nonlinearity. 2012;25:449–479.
  • HimonasA, HollimanC. On well-posedness of the Degasperis-Procesi equation. Discrete Contin. Dyn. Syst. 2011;31:469–488.
  • FuY, LiuZ.Non-uniform dependence on initial data for the periodic modified Camassa–Holm equation. Nonl. Diff. Eqns. Appl. doi:10.1007/s00030-012-0177-y.
  • FuY, LiuZ. Non-uniform dependence on initial data for the periodic Degasperis-Procesi equation. J. Math. Anal. Appl. 2011;384:293–302.
  • ArendtW, BuS. Operator-valued fourier multipliers on periodic Besov spaces and applications. Proc. Edinb. Math. Soc.2004;47: 15–33.
  • DanchinR. A few remarks on the Camassa–Holm equation. Diff. Integr. Eqns. 2001;14:953–988.
  • DanchinR. Fourier analysis method for PDEs. Lecture Notes. 14 November, 2005.
  • SchmeisserHJ, TriebelH. Topics in Fourier analysis and function spaces. New York: Wiley in Chichester; 1987.
  • DanchinR. A note on well-posedness for Camassa-Holm equation. J. Diff. Eqns. 2003;192:429–444.
  • GlassO. Controllability and asymptotic stabilization of the Camassa-Holm equation. J. Diff. Eqns. 2008;245:1584–1615.
  • CheminJ.Localization in Fourier space and Navier-Stokes. In: Phase Space Analysis of Partial Differential Equations, CRM Series. Scuola Norm. Sup.Pisa; 2004. p. 53–136.
  • BahouriH, CheminJ, DanchinR. Fourier analysis and nonlinear partial differential equations. Berlin, Heidelberg: Springer-Verlag; 2011.
  • BourgainJ. Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. Part II: the KdV Equation. Geom. Funct. Anal. 1993;3:209–262.
  • HenryD. Geometric theory of semilinear parabolic equations. Vol. 840. New York: Springer; 1981.
  • KhesinB, MisiolekG. Euler equations on homogeneous spaces and Virasoro orbits. Adv. Math. 2003;176:116–144.
  • LiuJ. The Cauchy problem of a periodic 2-component μ-Hunter-Saxton system in Besov spaces. J. Math. Anal. Appl. 2013;399:650–666.
  • ShnirelmanA. On the nonuniqueness of weak solutions of the euler equations. Comm. Pure Appl. Math. 1997;50:1260–1286.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.