141
Views
4
CrossRef citations to date
0
Altmetric
Articles

Multiscale support vector regression method in Sobolev spaces on bounded domains

, &
Pages 548-569 | Received 26 Feb 2014, Accepted 18 Apr 2014, Published online: 19 May 2014

References

  • Franke C, Schaback R. Solving partial differential equations by collocation using radial basis functions. Appl. Math. Comput. 1998;93:73–82.
  • Hon YC, Schaback R. Solvability of partial differential equations by meshless kernel methods. Adv. Comput. Math. 2008;28:283–299.
  • Takeuchi T, Hon YC. Discretized Tikhonov regularization by reproducing kernel Hilbert space for backward heat conduction problem. Adv. Comput. Math. 2011;34:167–183.
  • Kansa EJ. Multiquadrics-a scattered data approximation scheme with applications to computational fluid dynamics-I. Surface approximations and partial derivative estimates. Comput. Math. Appl. 1990;19:127–145.
  • Krebs J. Support vector regression for the solution of linear integral equations. Inverse Probl. 2011;27:065007. 23 p.
  • Krebs J, Louis AK, Wendland H. Sobolev error estimates and a priori parameter selection for semi-discrete Tikhonov regularization. J. Inverse Ill-Posed Probl. 2009;17:845–869.
  • Li M, Chen CS, Hon YC. A meshless method for solving nonhomogeneous Cauchy problems. Eng. Anal. Bound. Elem. 2011;35:499–506.
  • Li M, Jiang T, Hon YC. A meshless method based on RBFs method for nonhomogeneous backward heat conduction problem. Eng. Anal. Bound. Elem. 2010;34:785–792.
  • Takeuchi T, Yamamoto M. Tikhonov regularization by a reproducing kernel Hilbert space for the Cauchy problem for an elliptic equation. SIAM J. Sci. Comput. 2008;31:112–142.
  • Wendland H. Scattered data approximation. Cambridge: Cambridge University Press; 2005.
  • Schaback R. Error estimates and condition number for radial basis function interpolation. Adv. Comput. Math. 1995;3:251–264.
  • Schaback R. Creating surfaces from scattered data using radial basis functions. In: Daehlen M, Lyche T, Schumaker LL, editors. Mathematical methods for curves and surfaces. Nashville: Vanderbilt University Press; 1995. p. 477–496.
  • Wendland H. Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv. Comput. Math. 1995;4:389–396.
  • Wu Z. Compactly supported positive definite radial functions. Adv. Comput. Math. 1995;4:283–292.
  • Floater MS, Iske A. Multistep scattered data interpolation using compactly supported radial basis functions. J. Comput. Appl. Math. 1996;73:65–78.
  • Schaback R. On the efficiency of interpolation by radial basis functions. In: Le Méhauté A, Rabut C, Schumaker LL, editors. Surface fitting and multiresolution methods. Nashville: Vanderbilt University Press; 1997. p. 309–318.
  • Wendland H. Multiscale analysis in Sobolev space on bounded domains. Numer. Math. 2010;116:493–517.
  • Le Gia QT, Sloan I, Wendland H. Multiscale analysis in Sobolev spaces on the sphere. SIAM J. Numer. Anal. 2010;48:2065–2090.
  • Le Gia QT, Sloan I, Wendland H. Multiscale approximation for functions in arbitrary Sobolev spaces by scaled radial basis functions on the unit sphere. Appl. Comput. Harmon. Anal. 2012;32:401–412.
  • Le Gia QT, Sloan I, Wendland H. Multiscale RBF collocation for solving PDEs on spheres. Numer. Math. 2012;121:99–125.
  • Chernih A, Le Gia QT. Multiscale methods with compactly supported radial basis functions for Galerkin approximation of elliptic PDEs. IMA J. Numer. Anal. 2014;34:569–591.
  • Chernih A, Le Gia QT. Multiscale methods with compactly supported radial basis functions for the Stokes problem on bounded domains. ANZIAM J. Electron. Suppl. 2012;54:C137–C152.
  • Townsend A, Wendland H. Multiscale analysis in Sobolev spaces on bounded domains with zero boundary values. IMA J. Numer. Anal. 2013;33:1095–1114.
  • Zhong M, Hon YC, Lu S. Multiscale analysis for ill-posed problem with support vector approach. Forthcoming.
  • Zhong M, Lu S, Cheng J. Multiscale analysis for ill-posed problems with semi-discrete Tikhonov regularization. Inverse Probl. 2012;28:065019. 19 p.
  • Boser BE, Guyon IM, Vapnik VN. A training algorithm for optimal margin classifiers. In: Proceedings of the Fifth Annual Workshop on Computational Learning Theory. New York (NY): ACM; 1992. p. 144–152.
  • Cortes C, Vapnik V. Support-vector networks. Mach. Learn. 1995;20:273–297.
  • Vapnik V. Statistical learning theory. New York (NY): Wiley; 1998.
  • Vapnik V. The nature of statistical learning theory. 2nd ed. New York (NY): Springer; 2000.
  • Christianini N, Shawe-Taylor J. Support vector machines and other kernel-based learning methods. Cambridge: Cambridge University Press; 2000.
  • Hastie T, Tibshirani R, Friedman J. The elements of statistical learning. 2nd ed. New York (NY): Springer; 2009.
  • Schölkopf B, Smola AJ. Learning with kernels. Cambridge: MIT Press; 2002.
  • Smola AJ, Schölkopf B. A tutorial on support vector regression. Stat. Comput. 2004;14:199–222.
  • Rieger C, Zwicknagel B. Deterministic error analysis of support vector regression and related regularized kernel methods. J. Mach. Learn. Res. 2009;10:2115–2132.
  • Wu Z, Schaback R. Local error estimates for radial basis function interpolation of scattered data. IMA J. Numer. Anal. 1993;13:13–27.
  • Madych WR, Nelson SA. Bounds on multivariate polynomials and exponential error estimates for multiquadric interpolation. Numer. Math. 2005;101:643–662.
  • Wendland H. Error estimates for interpolation by compactly supported radial basis functions of minimal degree. J. Approx. Theory. 1998;93:258–272.
  • De Vito E, Rosasco L, Caponnetto A, Giovannini UD, Odone F. Learning from examples as an inverse problem. J. Mach. Learn. Res. 2005;6:883–904.
  • Poggio T, Smale S. The mathematics of learning: dealing with data. Not. Am. Math. Soc. 2003;50:537–544.
  • Micchelli CA, Pontil M. Learning the kernel function via regulation. J. Mach. Learn. Res. 2005;6:1099–1125.
  • Schölkopf B, Wiliamson RC, Bartlett PL. New support vector algorithms. Neural Comput. 2000;12:1207–1245.
  • Stein EM. Singular integrals and differentiability properties of functions. Priceton: Priceton University Press; 1971.
  • Wendland H, Rieger C. Approximate interpolation with applications to selecting smoothing parameters. Numer. Math. 2005;101:643–662.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.