Publication Cover
Applicable Analysis
An International Journal
Volume 95, 2016 - Issue 1
112
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Error analysis of a Fourier–Galerkin method applied to the Schrödinger equation

&
Pages 156-173 | Received 16 May 2014, Accepted 15 Dec 2014, Published online: 03 Jan 2015

References

  • Schrödinger E. An undulatory theory of the mechanics of atoms and molecules. Phys. Rev. 1926;28:1049–1070.
  • Scott AC, Chu FYF, McLaughlin DW. The soliton: a new concept in applied science. Proc. IEEE. 1973;61:1443–1483.
  • Ablowitz MJ, Segur H. Solitons and the inverse scattering transform. Philadelphia (PA): SIAM; 1981.
  • Rogers C, Shadwick WF. Bäcklund transformations and their applications. New York (NY): Academic Press; 1982.
  • Agrawal GP. Nonlinear fiber optics. 3rd ed.San Diego (CA): Academic Press; 2001.
  • Ablowitz MJ, Clarkson PA. Solitons, nonlinear evolution equations and inverse scattering. Cambridge: Cambridge University Press; 1991.
  • Sulem C, Sulem PL. The nonlinear Schrödinger equation: self-focusing and wave collapse. Vol. 139. New York (NY): Springer-Verlag; 1999.
  • Cazenave T. Semilinear Schrödinger equations. Vol. 10, Courant lecture notes in mathematics. 2004. Providence (RI): AMS.
  • Becerril R, Guzmán FS, Rendón Romero A, Valéz Alvarado S. Solving the time-dependent Schrödinger equation using finite difference methods. Revista Mexicana de Física E. 2008;54:120–132.
  • Koch O. Numerical solution of the time-dependent Schrödinger equation in ultrafast laser dynamics. WSEAS Trans. Math. 2004;3:584–590.
  • Heitzinger C, Ringhofer C, Selberherr S. Finite difference solutions of the nonlinear Schrödinger equation and their conservation of physical quantities. Commun. Math. Sci. 2007;5:779–788.
  • Moxley FI III, Chuss DT, Dai W. A generalized finite-difference time-domain scheme for solving nonlinear Schrödinger equations. Comp. Phys. Comm. 2013;184:1834–1841.
  • Delfour M, Fortin M, Payre G. Finite-difference solutions of a non-linear Schrödinger equation. J. Comput. Phys. 1981;44:277–288.
  • Wang H. Numerical studies on the split-step finite difference method for nonlinear Schrödinger equations. App. Math. Comp. 2005;170:17–35.
  • Bratsos AG. On the numerical solution of the nonlinear cubic Schrödinger equation. Intern. J. Pure Appl. Math. Sci. 2005;2:217–226.
  • Dai WZ, Nassar R. A finite difference scheme for the generalized nonlinear Schrödinger equation with variable coefficients. J. Comp. Math. 2000;18:123–132.
  • Weideman JAC, Herbst BM. Recurrence in semidiscrete approximations of the nonlinear Schrödinger equation. SIAM J. Sci. Stat. Comput. 1987;8:988–1004.
  • Weideman JAC, Herbst BM. Split-step methods for the solution of the nonlinear Schrödinger equation. SIAM J. Numer. Anal. 1986;23:485–507.
  • Pathria D, Morris JLL. Pseudo-spectral solution of nonlinear Schrödinger equations. J. Comput. Phys. 1990;87:108–125.
  • Javidi M, Golbabai A. Numerical studies on nonlinear Schrödinger equations by spectral collocation method with preconditioning. J. Math. Anal. Appl. 2007;333:1119–1127.
  • Sanz-Serna JM. Methods for the numerical solution of the nonlinear Schrödinger equation. Math. Comp. 1984;43:21–27.
  • Jin J, Wu X. Analysis of finite element method for one-dimensional time-dependent Schrödinger equation on unbounded domain. J. Comp. Appl. Math. 2008;220:240–256.
  • Gardner LRT, Gardner GA, Zaki SI, El Sahrawi Z. B-spline finite element studies of the non-linear Schrödinger equation. Comput. Meth. Appl. Mech. Eng. 1993;108:303–318.
  • Sanz-Serna JM, Manoranjan VS. A method for the integration in time of certain partial differential equations. J. Comput. Phys. 1983;52:273–289.
  • Mercier B. An introduction to the numerical analysis of spectral methods. Vol. 318, Lectures notes in physics. Berlin: Springer-Verlag Heidelberg; 1989.
  • Pelloni B, Douglais V. Error estimates for a fully discrete spectral scheme for a class of nonlinear, nonlocal dispersive wave equations. Appl. Numer. Math. 2001;37:95–107.
  • Maday Y, Quarteroni A. Error analysis for spectral approximation of the Korteweg-de Vries equation. ESAIM: Math. Modell. Numer. Anal. [Modélisation Mathématique et Analyse Numérique]. 1988;22:499–529.
  • Angulo J. Nonlinear dispersive equations: existence and stability of solitary and periodic travelling wave solutions. Vol. 156, Mathematical surveys and monographs. Providence (RI): AMS; 2009.
  • Gordon JP. Interaction forces among solitons in optical fiber. Opt. Lett. 1983;8:596-598.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.