Publication Cover
Applicable Analysis
An International Journal
Volume 95, 2016 - Issue 2
126
Views
3
CrossRef citations to date
0
Altmetric
Articles

Global behavior of N competing species with strong diffusion: diffusion leads to exclusion

, &
Pages 341-372 | Received 21 Jul 2014, Accepted 02 Jan 2015, Published online: 28 Jan 2015

References

  • Li B. Global asymptotic behavior of the chemostat: general response functions and different removal rates. SIAM J. Appl. Math. 1998;59:411–422.
  • Sari T, Mazenc F. Global dynamics of the chemostat with different removal rates and variable yields. Math. Biosci. Eng. 2011;8:827–840.
  • Smith HL, Waltman P. The theory of the chemostat. Cambridge:Cambridge University Press; 1995.
  • Wolkowicz GSK, Lu Z. Global dynamics of a mathematical model of competition in the chemostat: general response functions and differential death rates. SIAM J. Appl. Math. 1992;52:222–233.
  • Wolkowicz GSK, Xia H. Global asymptotic behavior of a chemostat model with discrete delays. SIAM J. Appl. Math. 1997;57:1019–1043.
  • Lou Y. Some challenging mathematical problems in evolution of dispersal and population dynamics. In: Friedman A, editor. Tutorials in mathematical biosciences. Vol. IV, Evolution and ecology of lecture notes in mathematics. Berlin: Springer; 2007. p. 171–205.
  • Hsu SB, Waltman P. On a system of reaction–diffusion equations arising from competition in an unstirred chemostat. SIAM J. Appl. Math. 1993;53:1026–1044.
  • So J, Waltman P. A nonlinear boundary value problem arising from competition in the chemostat. Appl. Math. Camp. 1989;32:169–183.
  • Wu JH. Global bifurcation of coexistence state for the competition model in the chemostat. Nonlinear Anal. 2000;39:817–835.
  • Nie H, Wu J. Uniqueness and stability for coexistence solutions of the unstirred chemostat model. Appl. Anal. 2010;89:1151–1159.
  • Dung JL, Smith HL, Waltman P. Growth in the unstirred chemostat with different diffusion rates. Fields Inst. Commun. 1999;21:131–142.
  • Baxley JV, Robinson SB. Coexistence in the unstirred chemosat. Appl. Math. Comput. 1998;39:41–65.
  • Castella F, Madec S. Coexistence phenomena and global bifurcation structure in a chemostat-like model with species-dependent diffusion rates. J. Math. Bio. 2014;68:377–415.
  • Ducrot A, Madec S. Singularly perturbed elliptic system modeling the competitive interactions for a single resource. Math. Models Meth. Appl. Sci. 2013;23:1939–1977.
  • Conway E, Hoff D, Smoller J. Large time behavior of solutions of systems of nonlinear reaction–diffusion equations. SIAM J. Appl. Math. 1978;35:1–16.
  • Carvalho AN, Hale JK. Nonlinear Anal. Large diffusion with dispersion. 1991;17:1139–1151.
  • Carr J. Applications of center manifold theory. Vol. 35, Applied mathematical sciences. New York (NY): Springer-Verlag; 1981.
  • Auger P, Poggiale JC. Aggregation and emergence in systems of ordinary differential equations aggregation and emergence in population dynamics. Math. Comput. Modell. 1998;27:1–21.
  • Poggiale JC. From behavioural to population level: growth and competition. Aggregation and emergence in popuation dynamics. Math. Comput. Modell. 1998;27:41–49.
  • Poggiale JC. Predator–prey models in heterogeneous environment: emergence of functional response. Math. Comput. Modell. 1998;27:63–71.
  • Arino O, Sanchez E, Bravo de la Parra R, Auger P. A singular perturbation in an age-structured population model. SIAM J. Appl. Math. 1999;60:408–436.
  • Castella F, Hoffbeck JP, Lagadeuc Y. A reduced model for spatially structured predator-prey systems with fast spatial migrations and slow demographic evolutions. Asymptot. Anal. 2009;61:125–175.
  • Sanchez E, Auger P, Poggiale J-C. Two-time scales in spatially structured models of population dynamics: a semigroup approach. J. Math. Anal. Appl. 2010;375:149–165.
  • Henry D. Geometric theory of semilinear parabolic equations. Vol. 840, Lecture notes in mathematics. New York (NY): Springer-Verlag; 1981.
  • Pazy A. Semigroups of linear operators and applications to partial differential equations. Vol. 44, Applied mathematical sciences. New York (NY): Springer-Verlag; 1983.
  • Hollis SL, Martin RH, Pierre M. Global existence and boundedness in reaction–diffusion systems SIAM. J. Math. Anal. 1987;18:744–761.
  • Madec S. Hétérogénéité spatiale en dynamique des populations [PhD thesis]. Rennes: University of Rennes; 2011 (in French).
  • Biegert M. The Neumann Laplacian on spaces of continuous functions. Note Mat. 2003;22:65–74.
  • Dockery J, Hutson V, Mischaikow K, Pernarowski M. The evolution of slow dispersal rates: a reaction diffusion model. J. Math. Biol. 1998;37:61–83.
  • Chesson P. General theory of competitive coexistence in spatially-varying environments. Theoret. Pop. Biol. 2000;58:211–237.
  • Pilyugin S, Waltman P. Multiple limit cycles in the chemostat with variable yield mathematical biosciences. J. Theoret. Biol. 2003;182:151–166.
  • Armstrong RA, McGehee R. Competitive exclusion. Amer. Nat. 1980;170:115–151.
  • Hsu SB. Limiting behavior for competing species. SIAM J. Appl. Math. 1978;34:760–763.
  • Hofbauer J, So JW-H. Competition in the gradostat: the global stability problem. Nonlinear Anal.: Theory Meth. Appl. 1994;22:1017–1031.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.