Publication Cover
Applicable Analysis
An International Journal
Volume 95, 2016 - Issue 12
1,866
Views
23
CrossRef citations to date
0
Altmetric
Original Articles

A discontinuous Poisson–Boltzmann equation with interfacial jump: homogenisation and residual error estimate

&
Pages 2661-2682 | Received 04 May 2015, Accepted 06 Oct 2015, Published online: 04 Nov 2015

References

  • Arnold A, Carrillo JA, Desvillettes L, et al. Entropies and equilibria of many-particle systems: an essay on recent research. Monatsh. Math. 2004;142:35–43.
  • Brinkman D, Fellner K, Markowich P, et al. A drift-diffusion-reaction model for excitonic photovoltaic bilayers: asymptotic analysis and a 2-D HDG finite element scheme. Math. Models Methods Appl. Sci. 2013;23:839–872.
  • Glitzky A, Mielke A. A gradient structure for systems coupling reaction-diffusion effects in bulk and interfaces. Z. Angew. Math. Phys. 2013;64:29–52.
  • Ray N, Muntean A, Knabner P. Rigorous homogenization of a Stokes--Nernst--Planck--Poisson system. J. Math. Anal. Appl. 2012;390:374–393.
  • Schmuck M. Modeling and deriving porous media Stokes--Poisson--Nernst--Planck equations by a multi-scale approach. Commun. Math. Sci. 2011;9:685–710.
  • Schmuck M, Bazant MZ. Homogenization of the Poisson--Nernst--Planck equations for ion transport in charged porous media. SIAM J. Appl. Math. 2015;75:1369–1401.
  • Becker-Steinberger K, Funken S, Landstorfer M, et al. A mathematical model for all solid-state Lithium-ion batteries. ECS Trans. 2010;25:285–296.
  • Dreyer W, Guhlke C, Müller R. Overcoming the shortcomings of the Nernst--Planck model. Phys. Chem. Chem. Phys. 2013;15:7075–7086.
  • Kovtunenko VA. Electro-kinetic structure model with interfacial reactions. In: Ara\’uo AL, Mota Soares CA, Moleiro F, Mota Soares CM, Suleman A, editors. Proceeding 7th ECCOMAS thematic conference on smart structures and materials SMART 2015; Lissabon: IDMEC; 2015. 20p.
  • Latz A, Zausch J, Iliev O. Modeling of species and charge transport in Li-ion batteries based on non-equilibrium thermodynamics. In: Dimov I, Dimova S, Kolkovska N,editors, Numerical methods and application. Vol. 6046, Lecture notes computer science. Heidelberg: Springer; 2011. p. 329–337.
  • Allaire G, Dufreche J-F, Mikelic A, et al. Asymptotic analysis of the Poisson-Boltzmann equation describing electrokinetics in porous media. Nonlinearity. 2013;26:881–910.
  • Burger M, Schlake B, Wolfram M-T. Nonlinear Poisson--Nernst--Planck equations for ion flux through confined geometries. Nonlinearity. 2012;25:961–990.
  • Fellner K, Kovtunenko VA. A singularly perturbed nonlinear Poisson-Boltzmann equation: uniform and super-asymptotic expansions. Math. Methods Appl. Sci. Accepted. doi: 10.1002/mma.3593
  • Allaire G, Mikelic A, Piatnitski A. Homogenization of the linearized ionic transport equations in rigid periodic porous media. J. Math. Phys. 2010;51:123103. 18 pp.
  • Looker JR, Carnie SL. Homogenization of the ionic transport equations in periodic porous media. Transp. Porous Media. 2006;65:107–131.
  • Pichler F. Anwendung der Finite-Elemente Methode auf ein Lithium-Ionen Batterie Modell [Application of the finite element method to a lithium-ion battery model]. Graz: Hochschulschrift; 2011.
  • Hess P. A strongly nonlinear elliptic boundary value problem. J. Math. Anal. Appl. 1973;43:241–249.
  • Argatov II. Introduction to asymptotic modelling in mechanics. St.-Petersburg: Polytechnics; 2004. Russian.
  • Bakhvalov NS, Panasenko GP. Homogenisation: averaging processes in periodic media. Dordrecht: Kluwer; 1989.
  • Bensoussan A, Lions J-L, Papanicolaou G. Asymptotic analysis for periodic structures. Providence (RI): AMS; 2011.
  • Oleinik OA, Shamaev AS, Yosifian GA. Mathematical problems in elasticity and homogenization. Amsterdam: North-Holland; 1992.
  • Sanchez-Palencia E. Nonhomogeneous media and vibration theory. Berlin: Springer-Verlag; 1980.
  • Zhikov VV, Kozlov SM, Oleinik OA. Homogenization of differential operators and integral functionals. Berlin: Springer-Verlag; 1994.
  • Allaire G, Damlamian A, Hornung U. Two-scale convergence on periodic surfaces and applications. In: Bourgeat AP, Carasso C, Luchhaus S, Mikelic A, editors. Proceeding of international conference on mathematical modelling of flow through porous media. Singapore: World Scientific; 1996. p. 15–25.
  • Dal Maso G. Gamma-convergence and homogenization. In: Francoise J-P, Naber G, Tsun TS, editors. Encyclopedia of mathematical physics. Oxford: Elsevier; 2006. p. 449–457.
  • Cioranescu D, Damlamian A, Donato P, et al. The periodic unfolding method in domains with holes. SIAM J. Math. Anal. 2012;44:718–760.
  • Fremiot G, Horn W, Laurain A, et al. On the analysis of boundary value problems in nonsmooth domains. Vol. 462, Dissertationes mathematicae. Warsaw: Institute of Mathematics Polish Academy of Sciences; 2009.
  • Hintermüller M, Kovtunenko VA, Kunisch K. A Papkovich--Neuber-based numerical approach to cracks with contact in 3D. IMA J. Appl. Math. 2009;74:325–343.
  • Khludnev AM, Kovtunenko VA. Analysis of cracks in solids. Southampton: WIT-Press; 2000.
  • Belyaev AG, Piatnitski AL, Chechkin GA. Averaging in a perforated domain with an oscillating third boundary condition. Sb. Math. 2001;192:933–949.
  • Cioranescu D, Donato P, Zaki R. Asymptotic behavior of elliptic problems in perforated domains with nonlinear boundary conditions. Asymptotic Anal. 2007;53:209–235.
  • Oleinik OA, Shaposhnikova TA. On the homogenization of the Poisson equation in partially perforated domains with arbitrary density of cavities and mixed type conditions on their boundary. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 1996;7:129–146.
  • Donato P, Monsurro S. Homogenization of two heat conductors with an interfacial contact resistance. Anal. Appl. 2004;2:247–273.
  • Hummel H-K. Homogenization for heat transfer in polycrystals with interfacial resistances. Appl. Anal. 2000;75:403–424.
  • Lipton R. Heat conduction in fine scale mixtures with interfacial contact resistance. SIAM J. Appl. Math. 1998;58:55–72.
  • Orlik J. Two-scale homogenization in transmission problems of elasticity with interface jumps. Appl. Anal. 2012;91:1299–1319.
  • Amar M, Andreucci D, Gianni R, et al. Evolution and memory effects in the homogenization limit for electrical conduction in biological tissues. Math. Models Methods Appl. Sci. 2004;14:1261–1295.
  • Cioranescu D, Damlamian A, Orlik J. Homogenization via unfolding in periodic elasticity with contact on closed and open cracks. Asymptotic Anal. 2013;82:201–232.
  • Neuss-Radu M, Jäger W. Effective transmission conditions for reaction-diffusion processes in domains separated by an interface. SIAM J. Math. Anal. 2007;39:687–720.
  • Francu J. Modification of unfolding approach to two-scale convergence. Math. Bohem. 2010;135:403–412.
  • Kovtunenko VA, Kunisch K. High precision identification of an object: optimality conditions based concept of imaging. SIAM J. Control Optim. 2014;52:773–796.
  • Conca C, Donato P. Nonhomogeneous Neumann problems in domains with small holes. RAIRO Model. Math. Anal. Numer. 1988;22:561–607.