Publication Cover
Applicable Analysis
An International Journal
Volume 96, 2017 - Issue 2
239
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

A weak Galerkin method for diffraction gratings

, , &
Pages 190-214 | Received 30 Sep 2015, Accepted 07 Nov 2015, Published online: 17 Dec 2015

References

  • Wood RW. On a remarkable case of uneven distribution of light in a diffraction grating spetrum. Philoso. Mag. 1902;4:399–402.
  • Meecham WC. Variational method for the calculation of the distribution of energy reflected from a periodic surface. J. Appl. Phys. 1956;27:361–367.
  • Ikuno H, Yasuura K. Improved point-matching method with application to scattering from a periodic surface. IEEE Trans.: Antennas Propag. 1973;21:657–662.
  • Uretski JL. The scattering of plane waves from periodic surfaces. Ann. Phys. 1965;33:400–427.
  • Wood RW, Cadilhac M. Étude théorique de la diffraction par un réseau [Theoretical Study of Diffraction by a Network]. C.R. Acad. Sci. Paris. 1964;259:2077–2080.
  • Nedelec JC, Starling F. Integral equation methods in a quasi-periodic diffraction problem for the time-harmonic Maxwell’s equations. SIAM J. Math. Anal. 1991;22:1679–1701.
  • Neviere M, Cadilhac M, Petit R. Applications of conformal mapping to the diffraction of electromagnetic. IEEE Trans.: Antennas Propag. 1973;21:37–46.
  • Petit R. Diffraction d’une onde plane par une reseau metalique. Rev. Opt. 1966;45:353–370.
  • Rayleigh JWS. On the dynamical theory of gratings. Proc. Roy. Soc. 1907;79:399–416.
  • Dobson DC. Optimal design of periodic antireflective structures for the Helmholtz equation. Eur. J. Appl. Math. 1993;4:321–340.
  • Bao G, Dobson DC, Cox JA. Mathematical studies in rigorous grating theory. J. Opt. Soc. Am. A. 1995;12:1029–1042.
  • Bao G. Finite elements approximation of time harmonic waves in periodic structures. SIAM J. Numer. Anal. 1995;32:1155–1169.
  • Bao G, Chen ZM, Wu HJ. Adaptive finite-element method for diffraction gratings. J. Opt. Soc. Am. A. 2005;22:1106–1114.
  • Cao YZ, Zhang R, Zhang K. Finite element and discontinuous Galerkin method for stochastic Helmholtz equation in Rd. J. Comput. Math. 2008;26:702–715.
  • Chen ZM, Wu HJ. An adaptive finite element method with perfectly matched layers for the wave scattering by periodic structures. SIAM. J. Numer. Anal. 2003;41:799–826.
  • Bao G, Cao YZ, Yang HT. Nummerical solution of diffraction problems by a least-squares finite element method. Math. Methods Appl. Sci. 2000;23:1073–1092.
  • Bao G, Dobson DC. On the scattering by a biperiodic structure. Proc. Am. Math. Soc. 2000;128:2715–2723.
  • Bao G, Li PJ, Wu HJ. An adaptive edge element method with perfectly matched absorbing layers for wave scattering by biperiodic structures. Math. Comput. 2009;79:1–34.
  • Elfouhaily TM, Guerin CA. A critical survey of approximate scattering wave theories from random rough surfaces. Waves Random Media. 2004;14:R1–R40.
  • Wang JP, Ye X. A weak galerkin finite element method for second-order elliptic problems. J. Comput. Appl. Math. 2013;241:103–115.
  • Wang JP, Ye X. A weak Galerkin mixed finite element method for second order elliptic problems. Math. Comput. 2014;83:2101–2126.
  • Mu L, Wang JP, Wang YQ. A weak Galerkin mixed finite element method for biharmonic equations. arXiv:1210.3818v2.
  • Mu L, Wang JP, Ye X, Zhao S. A numerical study on the weak Galerkin method for the Helmholtz equation with large wave numbers. arXiv:1111.0671v1.
  • Li JS, Wang XS, Zhang K. Multi-level Monte Carlo weak Galerkin method for elliptic equations with stochastic jump coefficients. forthcoming.
  • Mu L, Wang JP, Ye X. Weak galerkin finite element method on polytopal mesh. arXiv:1204.3655v2.
  • Grisvard P. Elliptic problems in nonsmooth domains. Vol. 21, Monographs and studies in mathematics. Boston: Pitman; 1985.
  • Mu L, Wang JP, Wang YQ, Ye X. A computational study of the weak Galerkin method for second-order elliptic equations. Numer. Alg. 2013;63:753–777.
  • Brezzi F, Fortin M. Mixed and Hybrid Finite Elements. New York (NY): Springer-Verlag; 1991.
  • Granet G. Reformulation of the lamellar grating problem through the concept of adaptive spatial resolution. J. Opt. Soc. Am. A. 1999;16:2510–2516.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.