Publication Cover
Applicable Analysis
An International Journal
Volume 96, 2017 - Issue 2
100
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

The direct and inverse problem for an inclusion within a heat-conducting layered medium

, &
Pages 231-246 | Received 12 Jul 2015, Accepted 19 Nov 2015, Published online: 30 Dec 2015

References

  • Patel PM, Lau SK, Almond DP. A review of image analysis techniques applied in transient thermographic nondestructive testing. Nondestr. Test. Eval. 1992;6:343–364.
  • Pourgholi R, Azizi N, Gasimov YS, et al. Removal of numerical instability in the solution of an inverse heat conduction problem. Commun. Nonlinear Sci. Numer. Simul. 2009;14:2664–2669.
  • Shidfar A, Karamali GR, Damirchi J. An inverse heat conduction problem with a nonlinear source term. Nonlinear Anal., Theory Meth. Appl. 2006;65:615–621.
  • Shi J, Wang J. Inverse problem of estimating space and time dependent hot surface heat flux in transient transpiration cooling process. Int. J. Therm. Sci. 2009;48:1398–1404.
  • Tadi M. An iterative method for the solution of ill-posed parabolic systems. Appl. Math. Comput. 2008;201:843–851.
  • Hon YC, Li M. A computational method for inverse free boundary determination problem. Int. J. Numer. Methods Eng. 2008;73:1291–1309.
  • Chen Q, Liu J. Solving an inverse parabolic problem by optimization from final measurement data. J. Comput. Appl. Math. 2006;193:183–203.
  • Ikehata M. An inverse source problem for the heat equation and the enclosure method. Inverse Prob. 2007;23:183–202.
  • Dennis BH, Dulikravich GS, Egorov IN, et al. Three dimensional parametric shape optimization using parallel computers. Comput. Fluid Dyn. J. 2009;17:256–266.
  • Liu G, Si BC. Analytical modeling of one-dimensional diffusion in layered systems with position-dependent diffusion coefficients. Adv. Water Resour. 2008;31:251–268.
  • Friedman A. Partial differential equations of parabolic type. Englewood Cliffs, NJ: Prentice-Hall; 1964.
  • Lions JL, Magenes E. Non-homogeneous boundary value problems and applications. Vol. 2. Berlin: Springer; 1972.
  • Yaremko OE. Solving the heat equation in piecewise-homogeneous anisotropic media using the multidimensional Fourier transforms. Subj.: Math. Phys. 2013. arXiv:1307.7217.
  • Johansson BT, Lesnic D. A method of fundamental solutions for transient heat conduction in layered materials. Eng. Anal. Boundary Elem. 2009;33:1362–1367.
  • Costabel M. Boundary integral operators for the heat equation. Integral Equ. Operator Theory. 1990;13:498–552.
  • Colton D, Kirsch A. A simple method for solving inverse scattering problems in the region. Inverse Prob. 1996;12:383–393.
  • Cakoni F, Colton D. Qualitative methods in inverse scattering theory. Berlin: Springer Verlag; 2006.
  • Arens T, Lechleiter A. The linear sampling method revisited. J. Integral Equ. Appl. 2009;21:179–202.
  • Collino F, Fares M, Haddar H. Numerical and analytical studies of the linear sampling method in electromagnetic scattering problems. Inverse Prob. 2003;19:1279–1299.
  • Colton D, Haddar H. An application of the reciprocity gap functional to inverse scattering theory. Inverse Prob. 2005;21:383–398.
  • Brühl M, Hanke M. Numerical implementation of two noniterative methods for locating inclusions by impedance tomography. Inverse Prob. 2000;16:1029–1042.
  • Charalambopoulos A, Gintides D, Kiriaki K. The linear sampling method for non-absorbing penetrable elastic bodies. Inverse Prob. 2003;19:549–561.
  • Pelekanos G, Sevroglou V. Inverse scattering by penetrable objects in two-dimensional elastodynamics. J. Comput. Appl. Math. 2003;151:129–140.
  • Chen Q, Haddar H, Lechleiter A, et al. A sampling method for inverse scattering in the time domain. Inverse Prob. 2010;26:085001.
  • Haddar H, Lechleiter A, Marmorat S. An improved time domain linear sampling method for Robin and Neumann obstacles. Appl. Anal. 2014;93:369–390.
  • Guo Y, Monk P, Colton D. Toward a time domain approach to the linear sampling method. Inverse Prob. 2013;29:095016.
  • Heck H, Nakamura G, Wang HB. Linear sampling method for identifying cavities in a heat conductor. Inverse Prob. 2012;28:075014.
  • Nakamura G, Wang HB. Linear sampling method for the heat equation with inclusions. Inverse Prob. 2013;29:104015.
  • Daido Y, Kang H, Nakamura G. A probe method for the inverse boundary value problem of nonstationary heat equations. Inverse Prob. 2007;23:1787–1800.
  • Ikehata M, Kawashita M. On the reconstruction of inclusions in a heat conductive body from dynamical boundary data over a finite time interval. Inverse Prob. 2010;26:095004.
  • Frühauf F, Gebauer B, Scherzer O. Detecting interfaces in a parabolic-elliptic problem from surface measurements. SIAM J. Numer. Anal. 2007;45:810–836.
  • Dawson M, Borman D, Hammond R, Lesnic D, Rhodes D. Detection of a two-dimensional moving cavity. Int. J. Comput. Math. 2011; 11:1569–1582.
  • Dawson M, Borman D, Hammond R, Lesnic D, Rhodes D. A meshless method for solving a two-dimensional transient inverse geometric problem. Int. J. Numer. Method. H. 2013; 23:790–817.
  • Chapko R, Kress R, Yoon JR. On the numerical solution of an inverse boundary value problem for the heat equation. Inverse Prob. 1998;14:853–867.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.