Publication Cover
Applicable Analysis
An International Journal
Volume 96, 2017 - Issue 2
101
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Curvature computations for a two-component Camassa-Holm equation with vorticity

Pages 307-323 | Received 06 Nov 2015, Accepted 15 Dec 2015, Published online: 22 Jan 2016

References

  • Escher J, Henry D, Kolev B, et al. Two-component equations modeling water waves with constant vorticity. arXiv:1406.1645v2.
  • Dullin HR, Gottwald GA, Holm DD. Camassa--Holm, Korteweg-de Vries-5 and other asymptotically equivalent equations for shallow water waves. Fluid Dyn. Res. 2003;33:73–95.
  • Degasperis A, Holm DD, Hone ANW. A new integrable equation with peakon solutions. Teoret. Mat. Fiz. 2002;133:1463–1474.
  • Holm DD, Staley MF. Wave structure and nonlinear balances in a family of evolutionary PDEs. SIAM J. Appl. Dyn. Syst. 2003;2:323–380.
  • Camassa R, Holm DD. An integrable shallow water wave equation with peaked solitons. Phys. Rev. Lett. 1993;71:1661–1664.
  • Degasperis A, Procesi M. Asymptotic integrability. Symmetry and perturbation theory (Rome 1998). River Edge (NJ): World Science Publisher; 1999. pp. 23–37.
  • Ivanov RI. Water waves and integrability. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 2007;365:2267–2280.
  • Constantin A, Escher J. On the blow-up rate and the blow-up set of breaking waves for a shallow water equation. Math. Z. 2000;233:75–91.
  • Escher J, Liu Y, Yin Z. Shock waves and blow-up phenomena for the periodic Degasperis--Procesi equation. Indiana Univ. Math. J. 2007;56:87–117.
  • Escher J, Yin Z. Well-posedness, blow-up phenomena, and global solutions for the b-equation. J. Reine Angew. Math. 2008;624:51–80.
  • Lenells J. Traveling wave solutions of the Camassa--Holm equation. J. Differ. Equ. 2005;217:393–430.
  • Lenells J. Traveling wave solutions of the Degasperis--Procesi equation. J. Math. Anal. Appl. 2005;306:72–82.
  • Constantin A, Ivanov R. On an integrable two-component Camassa-Holm shallow water system. Phys. Lett. A. 2008;372:7129–7132.
  • Escher J, Lechtenfeld O, Yin Z. Well-posedness and blow-up phenomena for the 2-component Camassa-Holm equation. Discrete Contin. Dyn. Syst. 2007;19:493–513.
  • Guan C, Yin Z. Global existence and blow-up phenomena for an integrable two-component Camassa-Holm shallow water system. J. Differ. Equ. 2010;248:2003–2014.
  • Hu Q, Yin Z. Well-posedness and blowup phenomena for a 2-component periodic Camassa--Holm equation. Proc. Roy. Soc. Edinburgh Sect. A. 2011;141:93–107.
  • Hu Q, Yin Z. Global existence and blow-up phenomena for a periodic 2-component Camassa-Holm equation. Monatsh. Math. 2012;165:217–235.
  • Escher J, Kolev B. The Degasperis--Procesi equation as a non-metric Euler equation. Math. Z. 2011;269:1137–1153.
  • Kolev B. Some geometric investigations on the Degasperis--Procesi shallow water equation. Wave Motion. 2009;46:412–419.
  • Escher J, Seiler J. The periodic b-equation and Euler equations on the circle. J. Math. Phys. 2010;51:053101.1–053101.6.
  • Escher J, Kohlmann M, Lenells J. The geometry of the two-component Camassa--Holm and Degasperis--Procesi equations. J. Geom. Phys. 2011;61:436–452.
  • Holm DD, Tronci C. Geodesic flows on semidirect-product Lie groups: geometry of singular measure-valued solutions. Proc. R. Soc. A. 2009;465:457–476.
  • Constantin A, Kolev B. On the geometric approach to the motion of inertial mechanical systems. J. Phys. A. 2002;35:51–79.
  • Misiołek G. Classical solutions of the periodic Camassa--Holm equation. Geom. Funct. Anal. 2002;12:1080–1104.
  • Bauer M, Kolev B, Preston SC. Geometric investigations of a vorticity model equation. arXiv:1504.08029v2.
  • Khesin B, Lenells J, Misiołek G, et al. Curvatures of Sobolev metrics on diffeomorphism groups. Pure Appl. Math. Quart. 2013;9:291–332.
  • Arnold VI. Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l’hydrodynamique des fluides parfaits. Ann. Inst. Fourier (Grenoble). 1966;16:319–361.
  • Ebin DG, Marsden J. Groups of diffeomorphisms and the motion of an incompressible fluid. Ann. Math. 1970;92:102–163.
  • Kouranbaeva S. The Camassa--Holm equation as a geodesic flow on the diffeomorphism group. J. Math. Phys. 1999;40:857–868.
  • Lenells J. Riemannian geometry on the diffeomorphism group of the circle. Ark. Mat. 2007;45:297–325.
  • Escher J, Lyons T. Two-component higher order Camassa--Holm systems with fractional inertia operator: a geometric approach. J. Geom. Mech. 2015;7:281–293.
  • Ionescu-Kruse D. Variational derivation of the Camassa--Holm shallow water equation. J. Nonlinear Math. Phys. 2007;14:311–320.
  • Lang S. Differential and Riemannian manifolds. GTM 160. New York (NY): Springer; 1995.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.