Publication Cover
Applicable Analysis
An International Journal
Volume 96, 2017 - Issue 5
105
Views
4
CrossRef citations to date
0
Altmetric
Articles

The inverse scattering problem for a partially coated penetrable cavity with interior measurements

Pages 844-868 | Received 23 Dec 2015, Accepted 23 Feb 2016, Published online: 15 Mar 2016

References

  • Cakoni F, Colton D. A qualitative approach to inverse scattering theory. New York (NY): Springer; 2014.
  • Cakoni F, Colton D, Monk P. The linear sampling method in inverse electromagnetic scattering. Vol. 80, CBMS series. Philadelphia: SIAM Publcations; 2011.
  • Kirsch A, Grinberg N. The factorization method for inverse problems. New York (NY): Oxford University Press; 2008.
  • Potthast R. A point source method for inverse acoustic and eletromagnetic obstacle scattering problems. IMA J. Appl. Math. 1998;61:119–140.
  • Colton D, Kress R. Inverse acoustic and eletromagnetic scattering theory. 3rd ed. New York (NY): Springer; 2013.
  • Cakoni F, Colton D. The determination of the surface impedance of a partially coated obstacle from far field data. SIAM J. Appl. Math. 2004;64:709–723.
  • Cakoni F, Colton D, Monk P. The direct and inverse scattering problems for partially coated obstacles. Inverse Probl. 2001;17:1997–2015.
  • Cakoni F, Colton D, Monk P. The determination of the surface conductivity of a partially coated dielectric. SIAM J. Appl. Math. 2005;65:767–789.
  • Cakoni F, Kress R, Schuft C. Integral equations for shape and impedance reconstruction in corrosion detection. Inverse Probl. 2010;26:095012.
  • Cakoni F, Monk P. The determination of anisotropic surface impedance in eletromagnetic scattering. J. Methods Appl. Anal. 2010;17:379–394.
  • Liu J, Nakamura G, Sini M. Reconstruction of the shape and surface impedance reconstruction for acoustic scattering data for an arbitrary cylinder. SIAM J. Appl. Math. 2007;67:1124–1146.
  • Liu J, Sini M. On the accuracy of the numerical detection of complex obstacles from far field data using the probe method. SIAM J. Sci. Comput. 2009;31:2665–2687.
  • Wang H, Liu J. On the reconstruction of surface impedance from the far-field data in inverse scattering problems. Appl. Anal. 2012;91:787–806.
  • Hu Y, Cakoni F, Liu J. The inverse problem for a partially coated cavity with interior measurements. Appl. Anal. 2014;93:936–956.
  • Qin H, Colton D. The inverse scattering problem for cavities with impedance boundary condition. J. Adv. Comput. Math. 2012;36:157–174.
  • Qin H, Colton D. The inverse scattering problem for cavities. J. Appl. Numer. Math. 2012;62:699–708.
  • Zeng F, Cakoni F, Sun J. An inverse electromagnetic scattering problem for cavity. Inverse Probl. 2011;27:125002.
  • Qin H, Cakoni F. Nonlinear integral equations for shape reconstruction in the inverse interior scattering problem. Inverse Probl. 2011;27:035005.
  • Ikehata M, Itou H. On reconstruction of a cavity in a linearized viscoelastic body from infinitely many transient boundary data. Inverse Probl. 2012;28:125003.
  • Ikehata M, Itou H. An inverse acoustic scattering problem inside a cavity with dynamical back-scattering data. Inverse Probl. 2012;28:095016.
  • Jakubik P. Testing the integrity of some cavity-the Cauchy problem and the range test. Appl. Numer. Math. 2008;58:899–914.
  • Cakoni F, Colton D, Meng S. The inverse scattering problem for a penetrable cavity with internal measurements. AMS Contemp. Math. 2014;615:71–88.
  • Meng S, Haddar H, Cakoni F. The factorization method for a cavity in an inhomogeneous medium. Inverse Probl. 2014;30:045008.
  • Angell T, Kirsch A. The conductive boundary condition for Maxwell’s equations. SIAM J. Appl. Math. 1992;52:1597–1610.
  • Angell T, Kirsch A. Optimization methods in electromagnetic radiation. New York (NY): Springer; 2004.
  • McLean W. Strongly elliptic systems and boundary integral equations. Cambridge: Cambridge Uninversity Press; 2000.
  • Cakoni F, Colton D, Haddar H. The linear sampling method for anisotropic media. J. Comput. Appl. Math. 2002;146:285–299.
  • Cakoni F, Haddar H. Transmission eigenvalues in inverse scattering theory. In: Uhlmann G, editor. Inside out II. Vol. 60. Cambridge: MSRI Publications; 2012. p. 527–578.
  • Hähner P. On the uniqueness of the shape of a penetrable anisotropic obstacle. J. Comput. Appl. Math. 2000;116:167–180.
  • Bonnet-BenDhia AS, Ciarlet P, Maria Zw{\"o}lf C. Time harmonic wave diffraction problems in materials with sign-shifting coefficients. J. Comput. Appl. Math. 2010;234:1912–1919.
  • Chesnel L. Étude de quelques problémes de transmission avec changement de signe, Application aux métamatériaux [PhD thesis] [Research on some transmission problems with a change of sign: application in metamaterials]. France: École Doctorale de l’École Polytechnique; 2012.
  • Bonnet-BenDhia AS, Chesnel L, Haddar H. On the use of t-coercivity to study the interior transmission eigenvalue problem. C. R. Acad. Sci. Paris, Ser. I. 2011;349:647–651.
  • Isakov V. On the uniqueness in the inverse transmission scattering problem. Commun. Partial Differ. Equ. 1988;15:1565–1587.
  • Isakov V. Inverse problems for partial differential equations. New York (NY): Springer; 1998.
  • Colton D, Kress R. Integral equation methods in scattering theory. New York (NY): Wiley; 1983.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.