Publication Cover
Applicable Analysis
An International Journal
Volume 96, 2017 - Issue 6
378
Views
18
CrossRef citations to date
0
Altmetric
Articles

Two meshless procedures: moving Kriging interpolation and element-free Galerkin for fractional PDEs

&
Pages 936-969 | Received 05 Nov 2015, Accepted 15 Mar 2016, Published online: 04 Apr 2016

References

  • Du R, Cao WR, Sun ZZ. A compact difference scheme for the fractional diffusion-wave equation. Appl. Math. Model. 2010;34:2998–3007.
  • Miller KS, Ross B. An introductional the fractional calculus and fractional differential equations. New York (NY): Academic Press; 1974.
  • Momani S, Odibat ZM. Fractional green function for linear time-fractional inhomogeneous partial differential equations in fluid mechanics. J. Appl. Math. Comput. 2007;24:167–178.
  • Odibat ZM. Computational algorithms for computing the fractional derivatives of functions. Math. Comput. Simul. 2009;79:2013–2020.
  • Oldham KB, Spanier J. The fractional calculus. New York (NY): Academic Press; 1974.
  • Podulbny I. Fractional differential equations. New York (NY): Academic Press; 1999.
  • Wess W. The fractional diffusion equation. J. Math. Phys. 1996;27:2782–2785.
  • Dehghan M, Manafian J, Saadatmandi A. Solving nonlinear fractional partial differential equations using the homotopy analysis method. Numer. Methods Partial Differ. Equ. 2010;26:448–479.
  • Bagley R, Torvik P. A theoretical basis for the application of fractional calculus to viscoelasticity. J. Rheol. 1983;27:201–210.
  • Metzler R, Klafter J. The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A. 2004;37:R161–208.
  • Oldham KB, Spanier J. The fractional calculus: theory and application of differentiation and integration to arbitrary order. Academic Press, London; 1974.
  • Diethelm K, Ford NJ. Analysis of fractional differential equations. J. Math. Anal. Appl. 2002;265:229–248.
  • Li L, Xu D, Luo M. Alternating direction implicit Galerkin finite element method for the two-dimensional fractional diffusion-wave equation. J. Comput. Phys. 2013;255:471–485.
  • Li L, Xu D. Alternating direction implicit Galerkin finite element method for the two-dimensional time fractional evolution equation. Numer. Math.: Theory Methods Appl. 2014;7:41–57.
  • Li L, Xu D. Alternating direction implicit-Euler method for the two-dimensional fractional evolution equation. J. Comput. Phys. 2013;236:157–168.
  • Sun ZZ, Wu XN. A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 2006;56:193–209.
  • Ford NJ, Xiao J, Yan Y. A finite element method for time fractional partial differential equaions. Fract. Calc. Appl. Anal. 2011;14:454–474.
  • Jiang Y, Ma J. High-order finite element methods for time-fractional partial differential equations. J. Comput. Appl. Math. 2011;235:3285–3290.
  • Zhang H, Liu F, Anh V. Galerkin finite element approximation of symmetric space-fractional partial differential equations. Appl. Math. Comput. 2010;217:2534–2545.
  • Cui M. Convergence analysis of high-order compact alternating direction implicit schemes for the two-dimensional time fractional diffusion equation. Numer. Algor. 2013;62:383–409.
  • Ren J, Sun ZZ. Efficient numerical solution of the multi-term time fractional diffusion-wave equation. East Asian J. Appl. Math. 2015;5:1–28.
  • Ren J, Sun ZZ. Maximum norm error analysis of difference schemes for fractional diffusion equations. Appl. Math. Comput. 2015;256:299–314.
  • Gu YT, Zhuang P, Liu Q. An advanced meshless method for time fractional diffusion equation. Int. J. Comput. Methods. 2011;8:653–665.
  • Liu Q, Gu Y, Zhuang P, et al. An implicit RBF meshless approach for time fractional diffusion equations. Comput. Mech. 2011;48:1–12.
  • Zhao X, Sun ZZ, Karniadakis GE. Second-order approximations for variable order fractional derivatives: algorithms and applications. J. Comput. Phys. 2015;293:184–200.
  • Bhrawy AH, Doha EH, Baleanu D, et al. A spectral tau algorithm based on Jacobi operational matrix for numerical solution of time fractional diffusion-wave equations. J. Comput. Phys. 2015;293:142–156.
  • Mustapha K, Schotzau D. Well-posedness of hp-version discontinuous Galerkin methods for fractional diffusion wave equations. IMA J. Numer. Anal. 2014;34:1426–1446.
  • Mustapha K, McLean W. Superconvergence of a discontinuous Galerkin method for fractional diffusion and wave equations. SIAM J. Numer. Anal. 2013;51:491–515.
  • Mustapha K. Time-stepping discontinuous Galerkin methods for fractional diffusion problems. Numer. Math. 2015;130:497–516.
  • McLeana W, Mustapha K. Time-stepping error bounds for fractional diffusion problems with non-smooth initial data. J. Comput. Phys. 2015;293:201–217.
  • Zhao X, Sun ZZ. Compact Crank-Nicolson schemes for a class of fractional Cattaneo equation in inhomogeneous medium. J. Sci. Comput. 2014;62:1–25.
  • Dehghan M. Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices. Math. Comput. Simul. 2006;71:16–30.
  • Ghazizadeh HR, Maerefat M, Azimi A. Explicit and implicit finite difference schemes for fractional Cattaneo equation. J. Comput. Phys. 2010;229:7042–7057.
  • Qi H, Jiang X. Solutions of the space-time fractional Cattaneo diffusion equation. Phys. A: Stat. Mech. Appl. 2011;390:1876–1883.
  • Qi H, Xu HY, Guo XW. The Cattaneo-type time fractional heat conduction equation for laser heating. Comput. Math. Appl. 2013;66:824–831.
  • Vong S, Wang Z. A compact difference scheme for a two dimensional fractional Klein-Gordon equation with Neumann boundary conditions. J. Comput. Phys. 2014;274:268–282.
  • Dehghan M, Abbaszadeh M, Mohebbi A. An implicit RBF meshless approach for solving the time fractional nonlinear sine-Gordon and Klein--Gordon equations. Eng. Anal. Bound. Elem. 2015;50:412–434.
  • Huang Q, Huang G, Zhan H. A finite element solution for the fractional advection--dispersion equation. Adv. Water Res. 2008;31:1578–1589.
  • Liu F, Zhuang P, Turner I, et al. A new fractional finite volume method for solving the fractional diffusion equation. Appl. Math. Model. 2014;38:3871–3878.
  • Liu Q, Liu F, Turner I, et al. Finite element approximation for the modified anomalous subdiffusion process. Appl. Math. Model. 2011;35:4103–4116.
  • Zhao Z, Li CP. A numerical approach to the generalized nonlinear fractional Fokker--Planck equation. Comput. Math. Appl. 2012;64:3075–3089.
  • Zhao X, Sun ZZ, Hao ZP. A fourth-order Compact ADI scheme for two-dimensional nonlinear space fractional Schrodinger equation. SIAM J. Sci. Comput. 2014;36:A2865–A2886.
  • Zhao Z, Li CP. Fractional difference/finite element approximations for the time-space fractional telegraph equation. Appl. Math. Comput. 2012;219:2975–2988.
  • Li CP, Zhao ZG, Chen YQ. Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion. Comput. Math. Appl. 2011;62:855–875.
  • Li CP, Zeng F. Numerical methods for fractional calculus. New York (NY): Chapman and Hall/CRC; 2015.
  • Zeng F, Li CP, Liu F, et al. The use of finite difference/element approximations for solving the time-fractional subdiffusion equation. SIAM J. Sci. Comput. 2013;35:A2976–A3000. 25 pages.
  • Zeng F, Liu F, Li CP, et al. A Crank--Nicolson ADI spectral method for a two-dimensional Riesz space fractional nonlinear reaction-diffusion equation. SIAM J. Numer. Anal. 2014;52:2599–2622.
  • Zeng F, Li CP, Liu F, et al. The use of finite difference/element approaches for solving the time-fractional subdiffusion equation. SIAM J. Sci. Comput. 2013;35:A2976–A3000.
  • Zhang YN, Sun ZZ. Error analysis of a compact ADI scheme for the 2D fractional subdiffusion equation. J. Sci. Comput. 2014;59:104–128.
  • Zhang YN, Sun ZZ, Wu HW. Error estimate of Crank--Nicolson-tape difference schemes for the subdiffusion equation. SIAM J. Numer. Anal. 2011;49:2302–2322.
  • Zhang YN, Sun ZZ. Alternating direction implicit schemes for the two-dimensional fractional sub-diffusion equation. J. Comput. Phys. 2011;230:8713–8728.
  • Zhang YN, Sun ZZ. Error analysis of a compact ADI scheme for the 2D fractional subdiffusion equation. J. Sci. Comput. 2014;59:104–128.
  • Gu YT, Zhuang P, Liu F. An advanced implicit meshless approach for the non-linear anomalous subdiffusion equation. Comput. Model. Eng. Sci. (CMES). 2010;56:303–334.
  • Gao GH, Sun ZZ, Zhang HW. A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications. J. Comput. Phys. 2014;259:33–50.
  • Zhuang P, Liu F, Turner I, Gu YT. Finite volume and finite element methods for solving a one-dimensional space-fractional Boussinesq equation. Appl. Math. Model. 2014;38:3860–3870.
  • Liu F, Zhuang P, Turner I, et al. A semi-alternating direction method for a 2-D fractional FitzHugh--Nagumo monodomain model on an approximate irregular domain. J. Comput. Phys. 2015;293:252–263.
  • Zheng Y, Li CP, Zhao Z. A fully discrete discontinuous Galerkin method for nonlinear fractional Fokker--Planck equation. Math. Prob. Eng.. 2010;26 pages. Article ID 279038.
  • Saadatmandi A, Dehghan M. A new operational matrix for solving fractional-order differential equations. Comput. Math. Appl. 2010;59:1326–1336.
  • Doha EH, Bhrawy AH, Abdelkawy MA, et al. Jacobi--Gauss--Lobatto collocation method for the numerical solution of 1+1 nonlinear Schrödinger equations. J. Comput. Phys. 2014;261:244–255.
  • Doha EH, Bhrawy AH, Baleanu D, et al. On shifted Jacobi spectral approximations for solving fractional differential equations. Appl. Math. Comput. 2013;219:8042–8056.
  • Bhrawy AH, Zaky MA. A method based on the Jacobi tau approximation for solving multi-term time-space fractional partial differential equations. J. Comput. Phys. 2015;281:876–895.
  • Bhrawy AH, Baleanu D. A spectral Legendre--Gauss--Lobatto collocation method for a space-fractional advection diffusion equations with variable coefficients. Rep. Math. Phys. 2013;72:219–233.
  • Liu Q, Liu F, Turner I, et al. A RBF meshless approach for modeling a fractal mobile/immobile transport model. Appl. Math. Comput. 2014;226:336–347.
  • Nochetto RH, Otarola E, Salgado AJ. A PDE approach to fractional diffusion in general domains: a priori error analysis. Found. Comput. Math. 2015;15:733–791.
  • Otarola E, Salgado AJ. Finite element approximation of the parabolic fractional obstacle problem. Forthcoming 2015. arXiv:1507.01985.
  • Belytschko T, Lu YY, Gu L. Element free Galerkin methods. Int. J. Numer. Methods Eng. 1994;37:229–256.
  • Belytschko T, Krongauz Y, Organ D, et al. Meshless methods: an overview and recent developments. Comput. Methods Appl. Mech. Eng. 1996;139:3–47.
  • Lancaster P, Salkauskas K. Surfaces generated by moving least squares methods. Math. Comput. 1981;37:141–158.
  • Cheng Y, Bai FN, Peng MJ. A novel interpolating element free Galerkin (IEFG) method for two-dimensional elastoplasticity. Appl. Math. Model. 2014;38:5187–5197.
  • Cheng Y, Li J. A meshless method with complex variables for elasticity. Acta Phys. Sinica. 2005;54:4463–4471.
  • Cheng Y, Peng M. Boundary element free method for elastodynamics. Sci. Chin. G. 2005;48:641–657.
  • Zhang Z, Hao SY, Liew KM, et al. The improved element-free Galerkin method for two-dimensional elastodynamics problems. Eng. Anal. Boundary Elem. 2013;37:1576–1584.
  • Zhang LW, Deng YJ, Liew KM. An improved element-free Galerkin method for numerical modeling of the biological population problems. Eng. Anal. Boundary Elem. 2014;40:181–188.
  • Zhang LW, Deng YJ, Liew KM, et al. The improved complex variable element free Galerkin method for two-dimensional Schrödinger equation. Comput. Math. Appl. 2014;68:1093–1106.
  • Zhang LW, Li DM, Liew KM. An element-free computational framework for elastodynamic problems based on the IMLS-Ritz method. Eng. Anal. Boundary Elem. 2015;54:39–46.
  • Zhang LW, Liew KM. An element-free based solution for nonlinear Schrödinger equations using the ICVMLS-Ritz method. Appl. Math. Comput. 2014;249:333–345.
  • Chung HJ, Belytschko T. An error estimate in the EFG method. Comput. Mech. 1998;21:91–100.
  • Ren H, Cheng Y. The interpolating element-free Galerkin (IEFG) method for two-dimensional potential problems. Eng. Anal. Boundary Elem. 2012;36:873–880.
  • Lee CK, Zhou CE. On error estimation and adaptive refinement for element free Galerkin method Part I: stress recovery and a posteriori error estimation. Comput. Struct. 2004;82:413–428.
  • Lee CK, Zhou CE. On error estimation and adaptive refinement for element free Galerkin method Part II: adaptive refinement. Comput. Struct. 2004;82:429–443.
  • Ponthot JP, Belytschko T. Arbitrary Lagrangian--Eulerian formulation for element free Galerkin method. Comput. Methods Appl. Mech. Engrg. 1998;152:19–46.
  • Gu YT, Wang QX, Lam KY. A meshless local Kriging method for large deformation analyses. Comput. Methods Appl. Mech. Eng. 2007;196:1673–1684.
  • Gu YT, Liu GR. A local point interpolation method for static and dynamic analysis of thin beams. Comput. Methods Appl. Mech. Eng. 2001;190:5515–5528.
  • Gu YT, Liu GR. A boundary point interpolation method for stress analysis of solids. Comput. Mech. 2002;28:47–54.
  • Gu YT, Wang W, Zhang LC, et al. An enriched radial point interpolation method (e-RPIM) for analysis of crack tip fields. Eng. Fract. Mech. 2011;78:175–190.
  • Dehghan M, Shokri A. A numerical method for two-dimensional Schrodinger equation using collocation and radial basis functions. Comput. Math. Appl. 2007;54:136–146.
  • Dehghan M, Salehi R. The solitary wave solution of the two-dimensional regularized long-wave equation in fluids and plasmas. Comput. Phys. Commun. 2011;182:2540–2549.
  • Tatari M, Dehghan M. On the solution of the non-local parabolic partial differential equations via radial basis functions. Appl. Math. Model. 2009;33:1729–1738.
  • Dehghan M, Shokri A. A numerical method for solution of the two-dimensional sine-Gordon equation using the radial basis functions. Math. Comput. Simul. 2008;79:700–715.
  • Dehghan M, Salehi R. A meshless local Petrov--Galerkin method for the time-dependent Maxwell equations. J. Comput. Appl. Math. 2014;268:93–110.
  • Taleei A, Dehghan M. Direct meshless local Petrov--Galerkin method for elliptic interface problems with applications in electrostatic and elastostatic. Comput. Methods Appl. Mech. Eng. 2014;278:479–498.
  • Dehghan M, Ghesmati A. Numerical simulation of two-dimensional sine-Gordon solitons via a local weak meshless technique based on the radial point interpolation method (RPIM). Comput. Phys. Commun. 2010;181:772–786.
  • Salehi R, Dehghan M. A moving least square reproducing polynomial meshless method. Appl. Numer. Math. 2013;69:34–58.
  • Liu F, Zhuang P, Burrage K. Numerical methods and analysis for a class of fractional advection--dispersion models. Comput. Math. Appl. 2012;64:2990–3007.
  • Quarteroni A, Valli A. Numerical approximation of partial differential equations. New York (NY): Springer-Verlag; 1997.
  • Li X. Error estimates for the moving least-square approximation and the element-free Galerkin method in n-dimensional spaces. Appl. Numer. Math. 2016;99:77–97.
  • Li X. Meshless Galerkin algorithms for boundary integral equations with moving least square approximations. Appl. Numer. Math. 2011;61:1237–1256.
  • Li X, Zhu J. A Galerkin boundary node method and its convergence analysis. J. Comput. Appl. Math. 2009;230:314–328.
  • Li X, Chen H, Wang Y. Error analysis in Sobolev spaces for the improved moving least-square approximation and the improved element-free Galerkin method. Appl. Math. Comput. 2015;262:56–78.
  • Li X, Zhang S. Meshless analysis and applications of a symmetric improved Galerkin boundary node method using the improved moving least-square approximation. Appl. Math. Model. 2016;40:2875–2896.
  • Li X. An interpolating boundary element-free method for three-dimensional potential problems. Appl. Math. Model. 2015;39:3116–3134.
  • Liu GR, Gu YT. An introduction to meshfree methods and their programming. Dordrecht: Springer; 2005.
  • Cheng R, Cheng Y. Error estimates for the finite point method. Appl. Numer. Math. 2008;58:884–898.
  • Gu L. Moving Kriging inter polation and element-free Galerkin method. Int. J. Numer. Meth. Eng. 2003;56:1–11.
  • Zheng B, Dai B. A meshless local moving Kriging method for two-dimensional solids. Appl. Math. Comput. 2011;218:563–573.
  • Mohebbi A, Dehghan M. The use of compact boundary value method for the solution of two-dimensional Schrodinger equation. J. Comput. Appl. Math. 2009;225:124–134.
  • Cui M. Compact finite difference method for the fractional diffusion equation. J. Comput. Phys. 2009;228:7792–7804.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.