Publication Cover
Applicable Analysis
An International Journal
Volume 96, 2017 - Issue 7
271
Views
21
CrossRef citations to date
0
Altmetric
Articles

Analysis of new conservative difference scheme for two-dimensional Rosenau-RLW equation

&
Pages 1255-1267 | Received 22 May 2015, Accepted 28 Apr 2016, Published online: 06 Jun 2016

References

  • Rosenau P. A quasi-continuous description of a non-linear transmission line. Phys. Scr. 1986;34:827–829.
  • Rosenau P. Dynamics of dense discrete systems. Progr. Theor. Phys. 1988;79:1028–1042.
  • Park MA. On the Rosenau equation. Math. Appl. Comput. 1990;9:145–152.
  • Chung SK, Ha SN. Finite element Galerkin solutions for the Rosenau equation. Appl. Anal. 1994;54:39–56.
  • Chung SK, Pani AK. Numerical methods for the Rosenau equation. Appl. Anal. 2001;77:351–369.
  • Kim YD, Lee HY. The convergence of finite element Galerkin solution of the Rosenau equation. Korean J. Comput. Appl. Math. 1998;5:171–180.
  • Lee HY, Ahn MJ. The convergence of the fully discrete solution for the Rosenau equation. Comput. Math. Appl. 1996;32:15–22.
  • Hu JS, Zheng KL. Two conservative difference schemes for the generalized Rosenau equation. Boundary Value Prob. 2010; 2010:13p. Article ID 543503.
  • Atouani N, Omrani K. A new conservative high-order accurate difference scheme for the Rosenau equation. Appl. Anal. 2014. doi:10.1080/00036811.2014.987134.
  • Manickam SA, Pani AK, Chung SK. A second order splitting combined with cubic spline collacation method for the Rosenau equation. Numer. Methods Partial Differ. Equ. 1998;14:695–716.
  • Peregrine DH. Calculations of the development of an unduiar bore. J. Fluid Mech. 1966;25:321–330.
  • Achouri T, Ayadi M, Omrani K. A fully Galerkin method for the damped generalized regularized long-wave (DGRLW) equation, Inc. Numer. Methods Partial Differ. Equ. 2009;25:668–684.
  • Arnold D, Douglas J, Thomée V. Superconvergence of finite element approximation to the solution of a Sobolev equation in a single space variable. Math. Comput. 1981;27:737–743.
  • Ewing R. Time-stepping Gelerkin methods for nonlinear Sobolev equations. SIAM J. Numer. Anal. 1978;15:1125–1150.
  • Khalifa A, Raslan K, Alzubaidi H. A collocation method with cubic B-spline for solving the MRLW eqution. J. Comput. Appl. Math. 2008;212:406–418.
  • Omrani K. The converence of the fully discrete Galerkin approximations for the Benjiamin-Bona-Mahony (BBM) equation. Appl. Math. Comput. 2006;180:614–621.
  • Avilez-Valente P, Seabra-Santos F. A Petrov--Galerkin finite element scheme for the regularized long wave equation. Comput. Mechan. 2004;34:256–270.
  • Dogan A. Numerical solution of regularized long wave equation using Petrov--Galerkin method. Commun. Numer. Meth. Eng. 2001;17:485–494.
  • Gao F, Qiao F, Rui H. Numerical simulation of the modified regularized long wave equation by split least-squares mixed finite element method. Math. Comput. Simul. 2015;109:64–73. doi:10.1016/j.matcom.2014.06.005.
  • Guo H, Rui H. Least-squares Galerkin procedures for Sobolev equation. Acta Math. Appl. Sinica. 2006;29:609–618.
  • Guo L, Chen H. H1-Galerkin mixed finite element method for the Sobolev equation. J. Syst. Sci. Math. Sci. 2006;26:301–314.
  • Gao F, Qiu J, Zhang Q. Local discontinuous Galerkin finite element method and error estimates for one class of Sobolev equation. J. Sci. Comput. 2009;41:436–460.
  • Zhang Q, Gao F. A fully-discrete local discontinuous Galerkin method for convection-dominated Sobolev equation. J. Sci. Comput. 2012;51:107–134.
  • Achouri T, Khiari N, Omrani K. On the convergence of the difference schemes for the Benjiamin-Bona-Mahony (BBM) equation. Appl. Math. Comput. 2006;182:999–1005.
  • Khalifa A, Raslan K, Alzubaidi H. A finite difference scheme for the MRLW and solitary wave interactions. Appl. Math. Comput. 2007;189:346–354.
  • Omrani K, Ayadi M. Finite difference discretization of the Benjiamin-Bona-Mahony-Burgers (BBMB) equation. Numer. Methods Partial Differ. Equ. 2008;24:239–248.
  • Achouri T, Omrani K. Application of the homotopy perturbation method to the modified regularized long wave equation. Numer. Methods Partial Differ. Equ. 2010;26:399–411.
  • Labidi M, Omrani K. Numerical simulation of the modified regularized long wave equation by He’s variational iteration method. Numer. Methods Partial Differ. Equ. 2011;27:478–489.
  • Achouri T, Omrani K. Numerical solutions for the damped generalized regularized long-wave equation with a variable coefficient by Adomian decomposition method. Commun. Nonlinear Sci. Numer. Simul. 2009;14:2025–2033.
  • Omrani K, Abidi F, Achouri T, et al. A new conservative finite difference scheme for the Rosenau equation. Appl. Math. Comput. 2008;201:35–43.
  • Pan X, Zhang L. On the convergence of a conservative numerical scheme for the usual Rosenau-RLW equation. Appl. Math. Modell. 2012;36:3371–3378.
  • Wongsaijai B, Poochinapan K. A three-level average implicit finite difference scheme to solve equation obtained by coupling the Rosenau-KdV equation and the Rosenau-RLW equation. Appl. Math. Comput. 2014;245:289–304.
  • Zuo J-M, Zhang Y-M, Zhang T-D, et al. A new conservative difference scheme for the general Rosenau-RLW equation. Boundary Value Prob. 2010;2010:13 p. Article ID 516260.
  • Razborova P, Triki H, Biswas A. Perturbation of dispersive shallow water waves. Ocean Eng. 2013;63:1–7.
  • Razborova P, Moraru L, Biswas A. Perturbation of dispersive shallow water waves with Rosenau-KdV-RLW equation with power law nonlinearity. Romanian J. Phys. 2014;59:658–676.
  • Razborova P, Kara AH, Biswas A. Additional conservation laws for Rosenau-KdV-RLW equation with power law nonlinearity by Lie symmetry. Nonlinear Dyn. 2015;79:743–748.
  • Sanchez P, Ebadi G, Mojavir A, et al. Solitons and other solutions to perturbed Rosenau-KdV-RLW equation with power law nonlinearity. Acta Phys. Pol. A. 2015;127:1577–1586.
  • Triki H, Turgut AK, Moshokoa S, et al. Soliton solutions to KdV equation with spatio-temporal dispersion. Ocean Eng. 2016;114:192–203.
  • Qiao Z, Sun ZZ, Zhang Z. The stability and convergence of two linearized finite difference schemes for the nonlinear epitaxial growth, model. Numer. Methods Partial Differ. Equ. 2012;28:1893–1915.
  • Sun ZZ. Numerical analysis. Nanjing: Southeast University Press; 2002. Chinese.
  • Zhou YL. Applications of discrete functional analysis to the finite difference method. Beijing: International Academic Publishers; 1990.
  • Browder FE. Existence and uniqueness theorems for solutions of nonlinear boundary value problems. In: Finn R, editor. Applications of nonlinear partial differential equations. Vol. 17, Proceedings of symposia in applied mathematics. Providence: American Mathematical Society; 1965. p. 24–49.
  • Atouani N, Omrani K. Galerkin finite element method for the Rosenau-RLW equation. Comput. Math. Appl. 2013;66:289–303.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.