Publication Cover
Applicable Analysis
An International Journal
Volume 96, 2017 - Issue 11
207
Views
0
CrossRef citations to date
0
Altmetric
Articles

Gevrey class regularity of solutions to the Nernst–Planck–Poisson equations with generalized dissipation

&
Pages 1799-1829 | Received 21 Apr 2015, Accepted 01 Jun 2016, Published online: 11 Jul 2016

References

  • Debye P, Hückel E. Zur Theorie der Elektrolyte, II: Das Grenzgesetz für die elektrische Leitfähigkeit. Phys. Z. 1923;24:305–325.
  • Abdallah B, Méhats N, Vauchelet F. A note on the long time behavior for the drift-diffusion-Poisson system. C. R. Math. Acad. Sci. Paris. 2004;339:683–688.
  • Alexseev G. Solvability of a homogeneous initial-boundary value problem for equations of magneto-hydrodynamics of an ideal fluid. Dinamika Sploshn. Sredy. 1982;57:3–20.
  • Biler P, Dolbeault J. Long time behavior of solutions to Nernst--Planck and Debye--Hückel drift-diffusion systems. Ann. Henri Poincaré. 2000;1:461–472.
  • Biler P, Hebisch P, Nadzieja W. The Debye system: existence and large time behavior of solutions. Nonlinear Anal. 1994;23:1189–1209.
  • Corrias L, Perthame L, Zaag B. Global solutions of some chemotaxis and angiogenesis systems in high space dimensions. Milan J. Math. 2004;72:1–28.
  • Karch G. Scaling in nonlinear parabolic equations. Applications to Debye system. Aip. Conf. Proc. 2001;553:243–248.
  • Kurokiba M, Ogawa M. Well-posedness for the drift-diffusion system in Lp arising from the semiconductor device simulation. J. Math. Anal. Appl. 2008;342:1052–1067.
  • Ogawa T, Yamamoto M. Asymptotic behavior of solutions to driftdiffusion system with generalized dissipation. Math. Models Methods Appl. Sci. 2009;19:939–967.
  • Escudero C. The fractional Keller--Segel model. Nonlinearity. 2006;19:2909–2918.
  • Biler P, Karch G. Blowup of solutions to generalized Keller--Segel model. J. Evol. Equ. 2010;10:247–262.
  • Biler P, Wu G. Two-dimensional chemotaxis models with fractional diffusion. Math. Methods Appl. Sci. 2009;32:112–126.
  • Biler P. Local and global solvability of some parabolic systems modeling chemotaxis. Adv. Math. Sci. Appl. 1998;8:715–743.
  • Biler P, Nadzieja T. Existence and nonexistence of solutions for a model of gravitational interaction of particles I. Colloq. Math. 1994;66:319–344.
  • Herrero M, Valázquez J. Chemotaxis collapse for the Keller--Segel model. J. Math. Biol. 1996;35:177–194.
  • Keller EF, Segel LA. Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 1970;26:399–415.
  • Nagai T. Blow-up of radially symmetric solutions to a chemotaxis system. Adv. Math. Sci. Appl. 1995;5:581–601.
  • Bae H, Biswas A, Tadmor E. Analyticity and decay estimates of the Navier--Stokes equations in critical Besov spaces. Arch. Ration. Mech. Anal. 2012;205:963–991.
  • Grujic Z. The geometric structure of the super level sets and regularity for 3D Navier--Stokes equations. Indiana Univ. Math. J. 2001;50:1309–1317.
  • Kukavica I. Level sets of the vorticity and the stream function for the 2-D periodic Navier--Stokes equations with potential forces. J. Differ. Equ. 1996;126:374–388.
  • Kukavica I. On the dissipative scale for the Navier--Stokes equation. Indiana Univ. Math. J. 1999;48:1507–1081.
  • Oliver M, Titi E. Remark on the rate of decay of higher order derivatives for solutions to the Navier--Stokes equations in Rn. J. Funct. Anal. 2000;172:11–18.
  • Feichtinger H. Modulation spaces on locally compact Abelian group, Technical Report. Proceedings of international conference on wavelet and applications. New Delhi, India: Allied Publishers; 2003.
  • Gröchenig K. Foundations of time-frequency analysis. Boston (MA): Birkhäuser; 2001.
  • Levermore C, Oliver M. The complex Ginzburg-Landau equation as a model problem. Lectures Appl. Math. 1996;31:141–190.
  • Huang C, Wang B. Analyticity for the (generalized) Navier--Stokes equations with rough initial data. 2013. Available from: http://arxiv.org/abs/1310.2141.
  • Chen J, Fan D, Sun L. Asymptotic estimates for unimodular Fourier multipliers on modulation spaces. Discrete Contin. Dyn. Syst. 2012;32:467–482.
  • Cordero E, Nicola F. Some new Strichartz estimates for the Schrödinger equation. J. Differ. Equ. 2008;245:1945–1974.
  • Cordero E, Nicola F. Sharpness of some properties of Wiener amalgam and modulation spaces. Bull. Aust. Math. Soc. 2009;80:105–116.
  • Iwabuchi T. Navier--Stokes equations and nonlinear heat equations in modulation spaces with negative derivative indices. J. Differ. Equ. 2010;248:1972–2002.
  • Wang B, Huo Z, Hao C, et al. Harmonic analysis methods for nonlinear evolution equations. Beijing: World Scientific; 2011.
  • Wang B, Zhao L, Guo B. Isometric decomposition operators, function spaces Ep,qλ and their applications to nonlinear evolution equations. J. Funct. Anal. 2006;233:1–39.
  • Konieczny P, Yoneda T. On dispersive effect of the Coriolis force for the stationary Navier--Stokes equations. J. Differ. Equ. 2011;250:3859–3873.
  • Giga Y, Sawada O. On regularizing-decay rate estimates for solutions to the Navier--Stokes initial value problem. Nonlinear Anal. Appl. 2003;1:549–562.
  • Miura H, Sawada O. On the regularizing rate estimates of Koch--Tataru’s solution to the Navier--Stokes equations. Asymptot. Anal. 2006;49:1–15.
  • Sawada O. On analyticity rate estimates of the solutions to the Navier--Stokes equations in Bessel potential spaces. J. Math. Anal. Appl. 2005;312:1–13.
  • Yamamoto M. Spatial analyticity of solutions to the drift-diffusion equation with generalized dissipation. Arch. Math. 2011;97:261–270.
  • Foias C, Temam R. Gevrey class regularity for the solutions of the Navier--Stokes equations. J. Funct. Anal. 1989;87:359–369.
  • Biswas A. Gevrey regularity for a class of dissipative equations with applications to decay. J. Differ. Equ. 2012;253:2739–2764.
  • Biswas A, Swanson D. Gevrey regularity of solutions to the 3D Navier--Stokes equations with weighted lp initial data. Indiana Univ. Math. J. 2007;56:1157–1188.
  • Bae H. Existence and analyticity of Lie-Lin solution to the Navier Stokes equation. Proc. Amer. Math. Soc. 2015;143:2887–2892.
  • Lei Z, Lin F. Global mild solutions of Navier--Stokes equations. Commun. Pure Appl. Math. 2011;64:1297–1304.
  • Bae H, Biswas A. Gevrey regularity for a class of dissipative equations with analytic nonlinearity. Methods Appl. Anal. 2015;22:377–408.
  • Bae H, Biswas A, Tadmor E. Analyticity of the subcritical and critical quasi-geostrophic equations in Besov spaces. 2013. Available from: http://arxiv.org/abs/1310.1624.
  • Biswas A. A. Gevrey regularity for the supercritical quasi-geostrophic equation. J. Differ. Equ. 2014;257:1753–1772.
  • Zhao J, Liu Q, Cui S. Regularizing and decay rate estimates for solutions to the Cauchy problem of the Debye-Hückel system. Nonlinear Differ. Equ. Appl. 2012;19:1–18.
  • Zhao J, Liu Q. On the Cauchy problem for the fractional drift-diffusion system in critical Besov spaces. Applicable Anal. 2014;93:1431–1450.
  • Masakazu Y, Keiichi K, Yuusuke S. Existence and analyticity of solutions to the drift-diffusion equation with critical dissipation. Hiroshima Math. J. 2014;44:275–313.
  • Sawada O. On the spatial analyticity of solutions to the Keller--Segel equations. Parabolic and Navier--Stokes equations. Part 2, Warsaw: Banach Center Publications 81, Part 2, Polish Academy of Sciences Institute of Mathematics; 2008. pp. 421–431.
  • Levermore C, Oliver M. Analyticity of solutions for a generalized Euler equation. J. Differ. Equ. 1997;33:321–339.
  • Oliver M, Titi E. Remark on the rate of decay of higher order derivatives for solutions to the Navier--Stokes equations in Rn. J. Funct. Anal. 2000;172:1–18.
  • Huang C. On the Analyticity for the generalized quadratic derivative complex Ginzburg--Landau equation. Abstr. Appl. Anal. 2014;Article ID: 607028, 11p.
  • Ziemer W. Weakly differentiable functions. Sobolev spaces and function of bounded variation. Vol. 120, Graduate text in graduate text in mathematics. New York (NY): Springer-Verlag; 1989.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.