Publication Cover
Applicable Analysis
An International Journal
Volume 96, 2017 - Issue 11
82
Views
2
CrossRef citations to date
0
Altmetric
Articles

Numerical estimates of acoustic fields in the ocean generated by moving airborne sources

&
Pages 1961-1981 | Received 05 Jan 2016, Accepted 04 Jun 2016, Published online: 27 Jun 2016

References

  • Rabinovich VS, Hernandez-Juarez J. Effective methods of estimates of acoustic fields in the ocean generated by moving sources. Applicable Analysis. 2016;95:124–137. doi:10.1080/00036811.2014.998655.
  • Rabinovich VS, Hernandez-Juarez J. Method of the spectral parameter power series in problems of underwater acoustics of the stratified ocean. Math. Methods Appl. Sci. 2015;38:1990–1999. doi:10.1002/mma.3197. ( John Wiley \amp; Sons, 2014).
  • Ahluwallia DS, Keller JB. Exact and asymptotic representation of acoustic fields in the stratified ocean. In: Kerller JB, Papadakis JS, editors. Wave propagation and underwater acoustic. Lecture notes in physics. Berlin: Springer-Verlag; 1977. p. 14–85.
  • Brekhovskikh LM. Waves in layered media. New York (NY): Academic Press; 1960.
  • Boyles CA. Acoustic waveguides. Applications to oceanic science. New York (NY): Wiley; 1984.
  • Lighthill G. Waves in fluids. Cambridge: Cambridge University Press; 1978.
  • Kinsler E. Fundamentals of acoustics. 3rd ed. New York (NY): Wiley; 1973.
  • Medwin H, Clay CS. Fundamentals of acoustical oceanography. New York (NY): Academic Press; 1998.
  • Tolstoy I, Clay CS. Ocean acoustics, theory and experiment in underwater sound. New York (NY): Mc Grow Hill; 1966.
  • Wilcox C. Sound propagation in stratified fluids. Vol. 50, Applied mathematical sciences. New York (NY): Springer-Verlag; 1984.
  • Buldyrev VS. Sound flied produced by a source moving in a non homogeneous layer lying on a homogeneous half-space. Zapis. sem. LOMI. 1986;156:35–49. Russian.
  • Buldyrev VS, Grigorieva NS. Acoustic field generated by a moving atmosphere source in a fluid layer with variable thickness. Akust. J. 1993;39:782–792. 1014--1024, Russian.
  • Hawker K. A normal mode theory of acoustic Doppler effects in the oceanic waveguide. J. Acoust. Soc. Am. 1979;65:675–681.
  • Lim PH, Ozard JM. On the underwater acoustic field of a moving point source. I. Range-independent environment. J. Acoust. Soc. Am. 1994;95:131–137. doi:10.1121/1.408370.
  • Lim PH, Ozard JM. On the underwater acoustic field of a moving point source. II Range-dependent environment. J. Acoust. Soc. Am. 1994;95:138–151. doi:10.1121/1.408371.
  • Il’ichev VI, Rabinovich VS, Rivelis EA, et al. Acoustic field of a moving narrow-band source in oceanic waveguides. Dokl. Akad. Nauk. SSSR. 1989;304:1123–1127. Russian.
  • Obresanova OA, Rabinovich VS. Acoustic field generated by moving sources in stratified waveguides. Wave Motion. 1998;27:155–167.
  • Grudsky SM, Obrezanova OA, Rabinovich VS. Propagation of the sound from a moving airborn source in an ice-converted ocean. Acoust. Phys. 1996;42:191–196.
  • Kazandjian L, Leviandier L. A normal mode theory of air-to-water sound transmission by a moving source. J. Acoust. Soc. Am. 1994;96:1732–1740.
  • Nazaikinskii VE, Schulze BW, Sternin BY. Quantization methods in differential equations. London: Taylor & Francis; 2002.
  • Pryce JD. Numerical solution of Sturm--Liouville problems. Oxford: Clarendon Press; 1993.
  • Porter MB, Reiss EL. A numerical method for ocean-acoustic normal modes. J. Acoust. Soc. Am. 1984;76:244–252.
  • Porter MB, Reiss EL. A numerical method for bottom interacting ocean acoustic normal modes. J. Acoust. Soc. Am. 1984;77:1760–1767.
  • Gedeon A. Comparison between rigorous theory and WKB-analysis of modes in graded-index waveguides. Opt. Commun. 1974;12:329–332.
  • Heinbockel JH. Numerical methods for scientific computing. Oxford: Trafford Publishing; 2006.
  • Kravchenko VV, Porter RM. Spectral parameter power series for Sturm--Liouville problems. Math. Methods Appl. Sci. 2010;33.A:459–468.
  • Khmelnytskaya KV, Kravchenko VV, Rosu HC. Eigenvalue problems, spectral parameter power series, and modern applications. Math. Methods Appl. Sci. 2014;38:1945–1969. doi:10.1002/mma3213.
  • Kravchenko VV. A representation for solutions of the Sturm--Liouville equation. Complex Var. Elliptic Equ. 2008;53:775–789.
  • Castillo-Perez R, Kravchenko VV, Oviedo-Galdeano H, et al. Dispersion equation and eigenvalues for quantum wells using spectral parameter power series. J. Math. Phys. 2011;52:043522.
  • Barrera-Figueroa V, Kravchenko VV, Rabinovich VS. Spectral parameter power series analysis of isotropic planar layered waveguides. Appl. Anal. 2014;33:729–755. doi:10.1080/00036811.2013.794940.
  • Berezin FA, Shubin MA. The Schrödinger equation. Dordrecht: Kluwer Academic; 1991.
  • Cohen L. Time-frequency analysis. New York (NY): Prentice Hall; 1995.
  • Jensen FB. Computational ocean acoustic, modern acoustic and signal processing. New York (NY): Springer Science+Business Media LLC; 2011. doi:10.1007/978-1-4419-8678-8\_1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.