Publication Cover
Applicable Analysis
An International Journal
Volume 96, 2017 - Issue 12
166
Views
33
CrossRef citations to date
0
Altmetric
Articles

Online adaptive local multiscale model reduction for heterogeneous problems in perforated domains

, , , &
Pages 2002-2031 | Received 14 Mar 2016, Accepted 07 Jun 2016, Published online: 06 Jul 2016

References

  • Chung ET, Efendiev Y, Li G, et al. Generalized multiscale finite element method for problems in perforated heterogeneous domains. Appl. Anal. 2015;255:1–15.
  • Iliev O, Kirsch R, Lakdawala Z, et al. Modeling and simulation of filtration processes. Currents in industrial mathematics; Berlin Heidelberg: Springer; 2015. p. 163–228.
  • Verleye B, Croce R, Griebel M, et al. Permeability of textile reinforcements: simulation, influence of shear and validation. Compos. Sci. Technol. 2008;68:2804–2810.
  • Griebel M, Klitz M. Homogenization and numerical simulation of flow in geometries with textile microstructures. Multiscale Model. Simul. 2010;8:1439–1460.
  • Iliev O, Lakdawala Z, Starikovicius V. On a numerical subgrid upscaling algorithm for Stokes--Brinkman equations. Comput. Math. Appl. 2013;65:435–448.
  • Sánchez-Palencia E. Non-homogeneous media and vibration theory. Vol. 127, Non-homogeneous media and vibration theory. Berlin Heidelberg: Springer; 1980.
  • Allaire G. Homogenization of the Navier--Stokes equations in open sets perforated with tiny holes ii: non-critical sizes of the holes for a volume distribution and a surface distribution of holes. Arch. Ration. Mech. Anal. 1991;113:261–298.
  • Maz’ya V, Movchan A. Asymptotic treatment of perforated domains without homogenization. Math. Nachr. 2010;283:104–125.
  • Jikov VV, Kozlov SM, Oleinik OA. Homogenization of differential operators and integral functionals; Berlin Heidelberg: Springer-Verlag; 1991.
  • Oleinik OA, Shaposhnikova TA. On the homogenization of the poisson equation in partially perforated domains with arbitrary density of cavities and mixed type conditions on their boundary. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni. 1996;7:129–146.
  • Fratrović T, Marušić-Paloka E. Nonlinear brinkman-type law as a critical case in the polymer fluid filtration. Appl. Anal. 2016;95:562–583.
  • Pankratova I, Pettersson K. Spectral asymptotics for an elliptic operator in a locally periodic perforated domain. Appl. Anal. 2015;94:1207–1234.
  • Allaire G, Hutridurga H. Upscaling nonlinear adsorption in periodic porous media-homogenization approach. Appl. Anal. 2015;1–36.
  • Bare Z, Orlik J, Panasenko G. Non homogeneous dirichlet conditions for an elastic beam: an asymptotic analysis. Appl. Anal. 2015;1–12.
  • Gilbert RP, Panchenko A, Vasilic A. Acoustic propagation in a random saturated medium: the biphasic case. Appl. Anal. 2014;93:676–697.
  • Muntean A, Ptashnyk M, Showalter RE. Analysis and approximation of microstructure models. Appl. Anal. 2012;91:1053–1054.
  • Gilbert RP, Panchenko A, Xie X. A prototype homogenization model for acoustics of granular materials. Int. J. Multiscale Comput. Eng. 2006;4:585–600.
  • Gilbert RP, Ou M-J. Acoustic wave propagation in a composite of two different poroelastic materials with a very rough periodic interface: a homogenization approach. Int. J. Multiscale Comput. Eng. 2003;1:431–440.
  • Beliaev AY, Kozlov S. Darcy equation for random porous media. Commun. Pure Appl. Math. 1996;49:1–34.
  • Henning P, Ohlberger M. The heterogeneous multiscale finite element method for elliptic homogenization problems in perforated domains. Numerische Mathematik. 2009;113:601–629.
  • Le Bris L, Legoll F, Lozinski A. An MsFEM type approach for perforated domains. Multiscale Model. Simul. 2014;12:1046–1077.
  • Brown DL, Peterseim D. A multiscale method for porous microstructures. arXiv preprint arXiv:1411.1944, 2014.
  • Maz’ya V, Movchan A, Nieves M. Green kernels and meso-scale approximations in perforated domains. Vol. 2077, Lecture notes in mathematics; Springer-Berlin; 2013.
  • Cao L. Multiscale asymptotic expansion and finite element methods for the mixed boundary value problems of second order elliptic equation in perforated domains. Numerische Mathematik. 2006;103:11–45.
  • Cao L, Zhang Y, Allegretto W, et al. Multiscale asymptotic method for Maxwell’s equations in composite material. SIAM J. Numer. Anal. 2010;47:4257–4289.
  • Weinan E, Engquist B. Heterogeneous multiscale methods. Commun. Math. Sci. 2003;1:87–132.
  • Efendiev Y, Galvis J, Hou T. Generalized multiscale finite element methods (gmsfem). J. Comput. Phys. 2013;251:116–135.
  • Chung ET, Efendiev Y, Li G. An adaptive GMsFEM for high contrast flow problems. J. Comput. Phys. 2014;273:54–76.
  • Chung E, Efendiev Y, Lee C. Mixed generalized multiscale finite element methods and applications. SIAM Multicale Model. Simul. 2014;13:338–366.
  • Efendiev Y, Hou T. Multiscale finite element methods: theory and applications. Vol. 4, Surveys and tutorials in the applied mathematical sciences; New York (NY): Springer; 2009.
  • Iliev O, Lazarov R, Willems J. Variational multiscale finite element method for flows in highly porous media. Multiscale Model. Simul. 2011;9:1350–1372.
  • Chu C-C, Graham IG, Hou T-Y. A new multiscale finite element method for high-contrast elliptic interface problems. Math. Comput. 2010;79:1915–1955.
  • Allaire G, Brizzi R. A multiscale finite element method for numerical homogenization. SIAM J. Multiscale Model. Simul. 2005;4:790–812.
  • Babuška I, Nistor V, Tarfulea N. Generalized finite element method for second-order elliptic operators with Dirichlet boundary conditions. J. Comput. Appl. Math. 2008;218:175–183.
  • Chung E, Leung WT, Vasilyeva M. Mixed GMsFEM for second order elliptic problem in perforated domains. J. Comput. Appl. Math. 2016;304:84–99.
  • Efendiev Y, Galvis J, Li G, et al. Generalized multiscale finite element methods. oversampling strategies. Int. J. Multiscale Comput. Eng. 2014;12:465–484.
  • Chung ET, Efendiev Y, Leung WT. Residual-driven online generalized multiscale finite element methods. J. Comput. Phys. 2015;302:176–190.
  • Chan HY, Chung ET, Efendiev Y. Adaptive mixed GMsFEM for flows in heterogeneous media. arXiv preprint arXiv:1507.01659, 2015.
  • Ohlberger M, Schindler F. Error control for the localized reduced basis multi-scale method with adaptive on-line enrichment. SIAM J. Sci. Comput. 2015;37:A2865–A2895.
  • Hou T, Wu X. A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys. 1997;134:169–189.
  • Chung ET, Efendiev Y, Leung WT. An online generalized multiscale discontinuous galerkin method (GMsDGM) for flows in heterogeneous media. arXiv preprint arXiv:1504.04417, 2015.
  • Calo V, Efendiev Y, Galvis J, et al. Randomized oversampling for generalized multiscale finite element methods. arXiv preprint, arXiv: 1409.7114, 2014.
  • Chung ET, Leung WT, Pollock S. Goal-oriented adaptivity for GMsFEM. J. Comput. Appl. Math. 2015;625–637.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.