Publication Cover
Applicable Analysis
An International Journal
Volume 96, 2017 - Issue 16
163
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

Unique strong and attractor of a three dimensional globally modified Cahn-Hilliard-Navier-Stokes model

Pages 2695-2716 | Received 19 Jul 2016, Accepted 07 Sep 2016, Published online: 21 Sep 2016

References

  • Gal CG, Grasselli M. Longtime behavior for a model of homogeneous incompressible two-phase flows. Discrete Continuous Dyn. Syst. 2010;28:1–39.
  • Blesgen T. A generalization of the Navier--Stokes equation to two-phase flow. Pysica D (Appl. Phys.) 1999;32:1119–1123.
  • Caginalp G. An analysis of a phase field model of a free boundary. Arch. Rational Mech. Anal. 1986;92:205–245.
  • Gal CG, Grasselli M. Asymptotic behavior of a Cahn--Hilliard--Navier--Stokes system in 2D. Ann. Inst. H. Poincar\’{e} Anal. Non Lin\’{e}aire. 2010;27:401–436.
  • Gal CG, Grasselli M. Trajectory attractors for binary fluid mixtures in 3D. Chin. Ann. Math. Ser. B. 2010;31:655–678.
  • Feireisl E, Petzeltová H, Rocca E, et al. Analysis of a phase-field model for two-phase compressible fluids. Math. Models Methods Appl. Sci. 2010;20:1129–1160.
  • Temam R. Infinite dimensional dynamical systems in mechanics and physics. 2nd ed. vol. 68, Applied mathematics at science: Springer-Verlag, New York (NY); 1997.
  • Onuki A. Phase transition of fluids in shear flow. J. Phys. Condens. Matter. 1997;9:6119–6157.
  • Hohenberg PC, Halperin BI. Theory of dynamical critical phenomena. Rev. Modern Phys. 1977;49:435–479.
  • Zhou Y, Fan J. The vanishing viscosity limit for a 2d Cahn--Hilliard--Navier--Stokes system with a slip boundary condition. Nonlinear Anal. Real World Appl. 2013;14:1130–1134.
  • Vishik MI, Komech AI, Fursikov AV. Some mathematical problems of statistical hydromechanics. Uspekhi Mat. Nauk. 1979;209:135–210.
  • Holm DD, Marsden JE, Ratiu TS. Euler-Poincaré models of ideal fluids with nonlinear dispersion. Phys. Rev. Lett. 1998;349:4173–4177.
  • Holm DD, Marsden JE, Ratiu TS. The Euler-Poincaré equations and semi-direct products with applications to continuum theories. Adv. Math. 1998;137:1–81.
  • Marsden JE, Shkoller S. Global well-posedness for the Lagrangian averaged Navier--Stokes (LANS-α) equations on bounded domains. Philos. Trans. R. Soc. Lond. A. 2001;359:1449–1468.
  • Chen S, Foias C, Holm DD, et al. The Camassa--Holm equations as a closure model for turbulent channel and pipe flows. Phys. Rev. Lett. 1998;81:5338–5341.
  • Chen S, Foias C, Holm DD, et al. A connection between the Camassa--Holm equations and turbulent flows in channels and pipes. Phys. Fluids. 1999;11:2343–2353.
  • Chen S, Foias C, Holm DD, et al. The Camassa--Holm equations and turbulence. Physica D. 1999;133:49–65.
  • Chen S, Holm DD, Margolin LG, et al. Direct numerical simulations of the Navier--Stokes alpha model. Physica D. 1999;133:66–83.
  • Zhou Y, Fan J. Regularity criteria for the viscous Camassa--Holm equations. Int. Math. Res. Not. 2009;13:2508–2518.
  • Zhou Y, Fan J. Global well-posedness for two modified-Leray-α-MHD models with partial viscous terms. Math. Methods Appl. Sci. 2010;33:856–862.
  • Zhou Y, Fan J. On the Cauchy problem for a Leray-α-MHD model. Nonlinear Anal. Real World Appl. 2011;4:1331–1335.
  • Zhou Y, Fan J. Global cauchy problem for a 2D Leray-α-MHD model with zero viscosity. Nonlinear Anal. 2011;74:1410–1420.
  • Fan J, Zhou Y. Global well-posedness of the Navier--Stokes-omega equations. Appl. Math. Lett. 2011;24:1915–1918.
  • Caraballo T, Real J, Kloeden PE. Unique strong solutions and V-attractors of a three dimensional system of globally modified Navier--Stokes equations. Adv. Nonlinear Stud. 2006;6:411–436.
  • Márquez AM. Existence and uniqueness of solutions, and pullback attractor for a system of globally modified 3D-Navier--Stokes equations with finite delay. Bol. Soc. Esp. Mat. Apl. SeMA. 2010;51:117–124.
  • Caraballo T, Kloeden PE, Real J. Invariant measures and statistical solutions of the globally modified Navier--Stokes equations. Discrete Continuous Dyn. Syst. Ser. B. 2008;10:761–781.
  • Kloeden PE, Valero J. The weak connectedness of the attainability set of weak solutions of the three-dimensional Navier--Stokes equations. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 2007;463:1491–08.
  • Kloeden PE, Marn-Rubio P, and Real J. Equivalence of invariant measures and stationary statistical solutions for the autonomous globally modified Navier--Stokes equations. Commun. Pure Appl. Anal. 2009;8:785–802.
  • Caraballo T, Real J, Márquez AM. Three-dimensional system of globally modified Navier--Stokes equations with delay. Int. J. Bifurcation Chaos Appl. Sci. Eng. 2010;20:2869–2883.
  • Marín-Rubio P, Real J, Márquez-Durán AM. On the convergence of solutions of globally modified Navier--Stokes equations with delays to solutions of Navier--Stokes equations with delays. Adv. Nonlinear Stud. 2011;11:917–927.
  • Romito M. The uniqueness of weak solutions of the globally modified Navier--Stokes equations. Adv. Nonlinear Stud. 2009;9:425–427.
  • Deugoue G, Djoko JK. On the time discretization for the globally modified three dimensional Navier--Stokes equations. J. Comput. Appl. Math. 2011;235:2015–2029.
  • Caraballo T, Kloeden PE. The three-dimensional globally modified Navier–Stokes equations: recent developments. In: Johann A, Kruse HP, and Rupp F, editors, Recent trends in dynamical systems: proceedings of a conference in honor of Jürgen Scheurle. Vol. 35, Springer proceedings in mathematics and statistics, 2013. p. 473–492.
  • Constantin P, Foias C. Navier--Stokes equations. Chicago lectures in mathematics. Chicago, IL: University of Chicago Press; 1988.
  • Abels H. On a diffuse interface model for two-phase flows of viscous, incompressible fluids with matched densities. Arch. Ration. Mech. Anal. 2009;194:463–506.
  • Caraballo T, Real J. Navier--Stokes equations with delays. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 2001;457:2441–2453.
  • Temam R. Navier--Stokes equations, theory and numerical analysis. AMS-Chelsea series. Providence (RI): AMS; 2001.
  • Łukaszewicz G. On pullback attractors in H01 for nonautonomous reaction-diffusion equations. Int. J. Bifurcation Chaos Appl. Sci. Eng. 2010;20:2637–2644.
  • Ma Q, Wang S, Zhong C. Necessary and sufficient conditions for the existence of global attractors for semigroups and applications. Indiana Univ. Math. J. 2002;51:1541–1559.
  • Kloeden PE, Langa JA. Flattening, squeezing and the existence of random attractors. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 2007;463:163–181.
  • Kloeden PE, Langa JA, Real J. Pullback V--attractors of the 3-dimensional globally modified Navier-Stokes equations. Commun. Pure Appl. Anal. 2007;6:937–955.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.