139
Views
1
CrossRef citations to date
0
Altmetric
Articles

Textile porosity determination based on a nonlinear heat and moisture transfer model

, &
Pages 1681-1697 | Received 15 Sep 2016, Accepted 15 Nov 2016, Published online: 25 Nov 2016

References

  • Henry P. Diffusion in absorbing media. Proc R Soc London NATO ASI Ser, Ser C. 1939;171:215–241.
  • Henry P. The diffusion of moisture and heat through textiles. Discuss Faraday Soc. 1948;3:243–257.
  • Fan JT, Luo ZX, Li Y. Heat and moisture transfer with sorption and condensation in porous clothing assemblies and numerical simulation. Int J Heat Mass Transfer. 2000;43:2989–3000.
  • Chen YB, Xu DH, Zhou XH. An inverse problem of textile materials determination under low temperature. J Fiber Bioeng Inf. 2011;4:359–370.
  • Li Y, Luo ZX. An improved mathematical simulation of the coupled diffusion of moisture and heat in wool fabrics. Text Res J. 1999;69:760–768.
  • Li FZ, Li YX, Liu Y. Numerical simulation of coupled heat and mass transfer in hygroscopic fabrics considering the influence of atmospheric pressure. Numer Heat Transfer B. 2004;45:249–262.
  • Li FZ, Li YX, Cao Y. The control volume time recursive expansion algorithm for solving coupled heat and moisture transfer through fabrics. J Nanjing Univ Aeronaut Astronaut. 2009;41:319–323.
  • Wu H, Fan JT. Study of heat and moisture transfer within multi-layer clothing assemblies consisting of different types of battings. Int J Therm Sci. 2008;4:641–647.
  • Xu DH. Mathematical modeling of heat and moisture transfer within textiles and corresponding inverse problems of textile material design. Beijing: Science Press; 2014.
  • Xu DH, Cheng JX, Chen YB. An inverse problem of thickness designed for textile material under low temperature. J Phys: Conf Ser. 2011;290:012018.
  • Xu DH, Cheng JX, Zhou XH. A model of heat and moisture transfer through the parallel pore textiles. J Fiber Bioeng Inf. 2011;3. doi:10.3993/jfbi03201110.
  • Wang YF. The computational methods of inverse problems and their applications. Beijing: Higher Education Press; 2007.
  • Wang ZW, Qiu SF, Ruan ZS, et al. A regularized optimization method for identifying the space-dependent source and the initial value simultaneously in a parabolic equation. Comput Math Appl. 2014;6:1345–1357.
  • Wang ZW, Zhang W, Wu B. Regularized optimization method for determining the space-dependent source in a parabolic equation without iteration. J Comput Anal Appl. 2016;20:1107–1126.
  • Xu DH, Chen YB, Zhou XH. Type design for bilayer textile materials under low temperature: modeling, numerical algorithm and simulation. Int J Heat Mass Transfer. 2013;60:139–146.
  • Xu DH, Chen YB, Zhou XH. An inverse problem of thickness design for single layer textile material under low temperature. J Math Ind. 2010;2:582–590.
  • Xu DH, Ge MB. Thickness determination in textile material design: dynamic modeling and numerial algorithms. Inverse Prob. 2012;28:035011.
  • Xu DH, Wen L. An inverse problem of bilayer textile thickness determination in dynamic heat and moisture transfer. Appl Anal: Int J. 2013;93:445–465.
  • Yu Y, Xu DH. On the inverse problem of thermal conductivity determination in nonlinear heat and moisture transfer model within textiles. Appl Math Comput. 2015;264:284–299.
  • Xu DH. Inverse problems of textile material design based on clothing heat-moisture comfort. Appl Anal: Int J. 2014;93:2426–2439.
  • Xu DH, Wen L. An inverse problem of textile porosity determination in dynamic heat and moisture transfer. Chin Ann Math. 2014;35:129–144.
  • Yu Y, Xu DH, Hon YC. Numerical algorithms for a sideways parabolic problem with variable coefficients. Appl Anal: Int J. doi:10.1080/00036811.2015.1038995.
  • Li B, Sun WW, Wang Y. Global existence of weak solution to the heat and moisture transport system in fibrous porous media. J Differ Equ. 2010;249:2618–2642.
  • Xu DH. Inverse problems of textile material design based on clothing heat-moisture comfort. Appl Anal: Int J. 2014;93:2426–2439.
  • Liu JJ. Regularization methods and applications for ill-posed problems. Beijing: Science Press; 2005.
  • Larsson S, Thomee V. Partial differential equations with numerical methods. Berlin: Springer-Verlag; 2009.
  • Fleming P. User’s guide: genetic algorithm and direct search toolbox for use with MATLAB. Natick: The MathWorks; 2004.
  • Du N, Fan JT, Wu HJ, et al. Optimal porosity distribution of fibrous insulation. Int J Heat Mass Transfer. 2009;52:4350–4357.
  • Ding SF, Su CY, Yu JZ. An optimizing BP neural network algorithm based on genetic algorithm. Artif Intell Rev. 2011;36:153–162.
  • Cheng J, Nakagawa J, Yamamoto M, et al. Uniqueness in an inverse problem for a one-dimensional fractional diffusion equation. Inverse Prob. 2009;25:115002.
  • Knackstedt M, Ninham B. Diffusion in model disordered media. Phys Rev Lett. 1995;75:653–656.
  • Li YJ, Farrher G, Kimmial R. Sub- and superdiffusive molecular displacement laws in disordered porous media probed by nuclear magnetic resonance. Phys Rev E. 2006;74:066309.
  • Luchko Y, Rundell W, Yamamoto M. Uniqueness and reconstruction of an unknown semilinear term in a time-fractional reaction-diffusion equation. Inverse Prob. 2013;29:065019.
  • Margolin G, Berkowitz B. Application of continous time random walks to transport in porous media. J Phys B. 2004;104:3942–3947.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.