143
Views
2
CrossRef citations to date
0
Altmetric
Articles

Dynamic thermoviscoelastic thermistor problem with contact and nonmonotone friction

, , &
Pages 1432-1453 | Received 07 Feb 2017, Accepted 07 Nov 2017, Published online: 21 Nov 2017

References

  • Allegreto W, Lin Y, Ma S. Existence and long time behaviour of solutions to obstacle thermistor equations. Discrete Contin Dyn Syst. 2002;8:757–780.
  • Allegreto W, Lin Y, Zhou A. A box scheme for coupled systems resulting from microsensor thermistor problems. Dyn Contin Discrete Impuls Syst. 1999;5:209–223.
  • Ammi MRS, Torres DFM. Optimal control of nonlocal thermistor equations. Int J, Control. 2012;85(11):1789–1801. DOI:10.1080/00207179.2012.703789
  • Antontsev SN, Chipot M. The thermistor problem: existence, smoothness, uniqueness, blowup. SIAM J Math Anal. 1994;25(4):1128–1156.
  • Chen X. Existence and regularity of solutions of a nonlinear degenerate elliptic system arising from a thermistor problem. J Partial Differ Equ. 1994;7:19–34.
  • Cimatti G. Stability and multiplicity of solutions for the thermistor problem. Ann Mat Pura Appl. 2002;181(2):181–212.
  • Cimatti G. Remark on the number of solutions in the thermistor problem. Le Matematiche. 2011;66(2):49–60.
  • Howison SD. A note on the thermistor problem in two space dimension. Q Appl Math. 1989;47(3):509–512.
  • Howison SD, Rodrigues J, Shillor M. Stationary solutions to the thermistor problem. J Math Anal Appl. 1993;174:573–588.
  • Kutluay S, Bahadir AR, Ozdeć A. Various methods to the thermistor problem with a bulk electrical conductivity. Int J Numer Methods Eng. 1999;45(1):1–12.
  • Lacey AA. Thermal runaway in a nonlocal problem modelling Ohmic heating: part i: model derivation and some special cases. Eur J Appl Math. 1995;6:127–144.
  • Xie H, Allegretto W. Cα(Ω) solutions of a class of nonlinear degenerate elliptic systems arising in the thermistor problem. SIAM J Math Anal. 1991;22(6):1491–1499.
  • Xu X. The thermistor problem with conductivity vanishing for large temperature. Proc Roy Soc Edinburgh. 1994;124 A:1–21.
  • Xu X. On the existence of bounded temperature in the thermistor problem with degeneracy. Nonlinear Anal. 2000;42:199–213.
  • Zhou S, Westbrook DR. Numerical solutions of the thermistor equations. J Comput Appl Math. 1997;79(1):101–118.
  • Kuttler K, Shillor M, Fernandez JR. Existence for the thermoviscoelastic thermistor problem. Differ Equ Dyn Sys. 2008;16(4):309–332.
  • Gariepy R, Shillor M, Xu X. Existence of capacity solutions to a model for in situ vitrification. Eur J Appl Math. 1998;9(9):543–559.
  • Shi P, Shillor M, Xu X. Existence of a solution to the Stefan problem with Joule’s heating. J Differ Equ. 1993;105(2):239–263.
  • Xu X, Shillor M. The Stefan problem with convection and Joule’s heating. Adv Differ Equ. 1997;2(4):667–691.
  • Bartosz K, Danan D, Szafraniec P. Numerical analysis of a system of hemivariational inequalities arising in thermoviscoelasticity. Comput Math Appl. 2017;73(5):727–746.
  • Benaissa H, Essoufi El-H, Fakhar R. Existence results for unilateral contact problem with friction of thermoelectro-elasticity. Appl Math Mech. 2015;36:911–926.
  • Benaissa H, Essoufi El-H, Fakhar R. Variational analysis of a thermo-piezoelectric contact problem with friction. J Adv Res Appl Math. 2015;7:52–75.
  • Bonetti E, Bonfanti G, Rossi R. Analysis of a temperature-dependent model for adhesive contact with friction. Phys D: Nonlinear Phenom. 2014;285:42–62.
  • Bonetti E, Bonfanti G, Rossi R. Modeling via the internal energy balance and analysis of adhesive contact with friction in thermoviscoelasticity. Nonlinear Anal: Real World Appl. 2015;22:473–507.
  • Eck C, Jarušek J, Krbec M. Unilateral contact problems. Pure and applied mathematics. Boca Raton (FL): Chapman & Hall/CRC Press; 2005.
  • Shillor M, Sofonea M, Telega JJ. Models and analysis of quasistatic contact. Lecture notes in physics. Berlin: Springer; 2004.
  • Han W, Sofonea M. Quasistatic contact problems in viscoelasticity and viscoplasticity, Studies in advanced mathematics. Providence (RI), Somerville (MA): American Mathematical Society, International Press; 2002.
  • Han W, Migorski S, Sofonea M. Advances in variational and hemivariational inequalities. Vol. 33, Advances in mechanics and mathematics. New York (NY): Springer; 2015.
  • Migórski S, Szafraniec P. A class of dynamic frictional contact problems governed by a system of hemivariational inequalities in thermoviscoelasticity. Nonlinear Anal: Real World Appl. 2014;15:158–171.
  • Migórski S, Ochal A, Sofonea M. Nonlinear inclusions and hemivariational inequalities. In: Models and analysis of contact problems. Vol. 26, Advances in mechanics and mathematics. New York (NY): Springer; 2013.
  • Sofonea M, Matei A. History-dependent quasivariational inequalities arising in contact mechanics. Eur J Appl Math. 2011;22:471–491.
  • Szafraniec P. Analysis of an elasto-piezoelectric system of hemivariational inequalities with thermal effects. Act Math Scient. 2017;37(4):1048–1060.
  • Szafraniec P. Dynamic nonsmooth frictional contact problems with damage in thermoviscoelasticity. Math Mech Solids. 2016;21(5):525–538.
  • Barboteu M, Sofonea M. Solvability of a dynamic contact problem between a piezoelectric body and a conductive foundation Appl Math Comput. 2009;215(8):2978–2991.
  • Lerguet Z, Shillor M, Sofonea M. A frictional contact problem for an electro-viscoelastic body. Electron J Differ Equ. 2007;170:1–16.
  • Barboteu M, Bartosz K, Janiczko T, Han W. Numerical analysis of a hyperbolic hemivariational inequality arising in dynamic contact. SIAM J Numer Anal. 2015;53(1):527–550.
  • Carl S, Le VK, Motreanu D. Nonsmooth variational problems and their inequalities- comparison principles and applications. New York (NY): Springer; 2007.
  • Clarke FH. Optimization and nonsmooth analysis. New York (NY): Wiley-Interscience; 1983.
  • Zeidler E. Nonlinear functional analysis and applications II A/B. New York (NY): Springer; 1990.
  • Roubicek T. Nonlinear partial differential equations with applications. Basel: Birkhuser; 2005.
  • Simon J. Compact Sets in the Space Lp (0, T; B). Ann Math pura Appl. 1987;156:65–96.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.