Publication Cover
Applicable Analysis
An International Journal
Volume 98, 2019 - Issue 15
278
Views
16
CrossRef citations to date
0
Altmetric
Articles

A linearized Crank–Nicolson Galerkin FEMs for the nonlinear fractional Ginzburg–Landau equation

, &
Pages 2648-2667 | Received 13 Nov 2017, Accepted 17 Apr 2018, Published online: 02 May 2018

References

  • Aranson IS , Kramer L . The world of the complex Ginzburg--Landau equation. Rev Mod Phys. 2002;74(1):99–143.
  • Tarasov VE , Zaslavsky GM . Fractional Ginzburg--Landau equation for fractal media. Phys A. 2005;354:249–261.
  • Tarasov VE , Zaslavsky GM . Fractional dynamics of coupled oscillators with long-range interaction. Chaos. 2006;16(2):023110.
  • Milovanov AV , Rasmussen JJ . Fractional generalization of the Ginzburg--Landau equation: an unconventional approach to critical phenomena in complex media. Phys Lett A. 2005;337(1):75–80.
  • Mvogo A , Tambue A , Ben-Bolie GH , et al . Localized numerical impulse solutions in diffuse neural networks modeled by the complex fractional Ginzburg--Landau equation. Commun Nonlinear Sci Numer Simul. 2016;39:396–410.
  • Yang Q , Liu F , Turner I . Numerical methods for fractional partial differential equations with Riesz space fractional derivatives. Appl Math Model. 2010;34(1):200–218.
  • Tarasov VE . Psi-series solution of fractional Ginzburg--Landau equation. J Phys A: Math Gen. 2006;39(26):8395–8407.
  • Pu X , Guo B . Well-posedness and dynamics for the fractional Ginzburg--Landau equation. Appl Anal. 2013;92(2):318–334.
  • Guo B , Huo Z . Well-posedness for the nonlinear fractional Schrödinger equation and inviscid limit behavior of solution for the fractional Ginzburg--Landau equation. Fract Calc Appl Anal. 2013;16(1):226–242.
  • Lu H , Lü S , Feng Z . Asymptotic dynamics of 2d fractional complex Ginzburg--Landau equation. Int J Bifurcation Chaos. 2013;23(12):1350202.
  • Millot V , Sire Y . On a fractional Ginzburg--Landau equation and 1/2-harmonic maps into spheres. Arch Ration Mech Anal. 2015;215(1):125–210.
  • Wang P , Huang C . An implicit midpoint difference scheme for the fractional Ginzburg--Landau equation. J Comput Phys. 2016;312:31–49.
  • Hao Z , Sun Z-Z . A linearized high-order difference scheme for the fractional Ginzburg--Landau equation. Numer Methods Partial Differ Equ. 2017;33(1):105–124.
  • Li M , Huang C , Wang P . Galerkin finite element method for nonlinear fractional Schrödinger equations. Numer Alg. 2017;74(2):499–525.
  • Wang P , Huang C . An efficient fourth-order in space difference scheme for the nonlinear fractional Ginzburg--Landau equation. BIT Numer Math. DOI:10.1007/s10543-018-0698-9
  • Lu H , Lü S , Zhang M . Fourier spectral approximations to the dynamics of 3D fractional complex Ginzburg-Landau equation. Discrete Cont Dyn-A. 2017;37(5):2539–2564.
  • Ervin VJ , Roop JP . Variational formulation for the stationary fractional advection dispersion equation. Numer Methods Partial Differ Equ. 2006;22(3):558–576.
  • Roop JP . Variational solution of the fractional advection dispersion equation [PhD thesis]. South Carolina: Clemson University; 2004.
  • Li C , Zhao Z , Chen Y . Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion. Comput Math Appl. 2011;62(3):855–875.
  • Zhang H , Liu F , Anh V . Galerkin finite element approximation of symmetric space-fractional partial differential equations. Appl Math Comput. 2010;217(6):2534–2545.
  • Bu W , Liu X , Tang Y , et al . Finite element multigrid method for multi-term time fractional advection diffusion equations. Int J Mod Simul Sci Comput. 2015;6(01):1540001.
  • Bu W , Tang Y , Wu Y , et al . Finite difference/finite element method for two-dimensional space and time fractional Bloch-Torrey equations. J Comput Phys. 2015;293:264–279.
  • Wang J . A new error analysis of Crank--Nicolson Galerkin FEMs for a generalized nonlinear Schrödinger equation. J Sci Comput. 2014;60(2):390–407.
  • Li D , Wang J . Unconditionally optimal error analysis of Crank--Nicolson Galerkin FEMs for a strongly nonlinear parabolic system. J Sci Comput. 2017;72(2):892–915.
  • Wang D , Xiao A , Yang W . Maximum-norm error analysis of a difference scheme for the space fractional CNLS. Appl Math Comput. 2015;257:241–251.
  • Wang P , Huang C , Zhao L . Point-wise error estimate of a conservative difference scheme for the fractional Schrödinger equation. J Comput Appl Math. 2016;306:231–247.
  • Akhmediev N , Afanasjev V , Soto-Crespo J . Singularities and special soliton solutions of the cubic-quintic complex Ginzburg-Landau equation. Phys Rev. E. 1996;53(1):1190–1201.
  • Xu Q , Chang Q . Difference methods for computing the Ginzburg--Landau equation in two dimensions. Numer Methods Partial Differ Equ. 2011;27(3):507–528.
  • Wang D , Xiao A , Yang W . Crank--Nicolson difference scheme for the coupled nonlinear Schrödinger equations with the Riesz space fractional derivative. J Comput Phys. 2013;242:670–681.
  • Zhao X , Sun Z-Z , Hao Z-P . A fourth-order compact ADI scheme for two-dimensional nonlinear space fractional Schrödinger equation. SIAM J Sci Comput. 2014;36(6):A2865–A2886.
  • Wang P , Huang C . An energy conservative difference scheme for the nonlinear fractional Schrödinger equations. J Comput Phys. 2015;293:238–251.
  • Wang P , Huang C . A conservative linearized difference scheme for the nonlinear fractional Schrödinger equation. Numer Alg. 2015;69:625–641.
  • Li M , Huang C , Wang P . Galerkin finite element method for nonlinear fractional Schrödinger equations. Numer Alg. 2017;74(2):499–525.
  • Li M , Gu X-M , Huang C , et al . A fast linearized conservative finite element method for the strongly coupled nonlinear fractional Schrödinger equations. J Comput Phys. 2018;358(1):256–282.
  • Gu X-M , Huang T-Z , Ji C-C , et al . Fast iterative method with a second-order implicit difference scheme for time-space fractional convection-diffusion equation. J Sci Comput. 2017;72(3):957–985.
  • Du Q . Numerical approximations of the Ginzburg--Landau models for superconductivity. J Math phys. 2005;46(9):095109.
  • Gao H , Li B , Sun W . Optimal error estimates of linearized Crank--Nicolson Galerkin FEMs for the time-dependent Ginzburg--Landau equations in superconductivity. SIAM J Numer Anal. 2014;52(3):1183–1202.
  • Gao H , Sun W . A new mixed formulation and efficient numerical solution of Ginzburg--Landau equations under the temporal gauge. SIAM J Sci Comput. 2016;38(3):A1339–A1357.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.