Publication Cover
Applicable Analysis
An International Journal
Volume 99, 2020 - Issue 2
206
Views
2
CrossRef citations to date
0
Altmetric
Articles

An anisotropic Sobolev–Hardy inequality with application to 3D axisymmetric Navier–Stokes equations

Pages 313-325 | Received 25 Jul 2017, Accepted 23 Jun 2018, Published online: 21 Jul 2018

References

  • Hardy GH. Note on a theorem of Hilbert. Math Zeitschrift. 1920;6:314–317. doi: 10.1007/BF01199965
  • Hardy GH. An inequality between integrals. Messenger Math. 1925;54:150–156.
  • Miao C, Wu J, Zhang Z. Littlewood–Paley theory and applications to fluid dynamics equations. Beijing: Science Press; 2012. (Monographs on Modern Pure Mathematics; No. 142).
  • Badiale M, Tarantello G. A Sobolev–Hardy inequality with application to a nonlinear elliptic equation arising in astrophysics. Arch Ration Mech Anal. 2002;163:259–293. doi: 10.1007/s002050200201
  • Chen H, Fang DY, Zhang T. Regularity of 3D axisymmetric Navier–Stokes equations. Discrete Contin Dyn Syst. 2017;37:1923–1939.
  • Escauriaza L, Seregin G, S˘verák V. Backward uniqueness for parabolic equations. Arch Ration Mech Anal. 2003;169:147–157. doi: 10.1007/s00205-003-0263-8
  • Jiu QS, Xin ZP. Some regularity criteria on suitable weak solutions of the 3-D incompressible axisymmetric Navier–Stokes equations. Lectures on Partial Differential Equations. New Stud Adv Math. 2003;2:119–139. Int. Press, Somerville
  • Prodi G. Un teorema di unicita per le equazioni di Navier-Stokes equations. Ann Mat Pura Appl. 1959;48:173–182. doi: 10.1007/BF02410664
  • Serrin J. On the interior regularity of weak solutions of the time-dependent Navier–Stokes equations. Arch Rat Mech Anal. 1962;9:187–195. doi: 10.1007/BF00253344
  • Struwe M. On partial regularity results for the Navier–Stokes equations. Comm Pure Appl Math. 1988;41:437–458. doi: 10.1002/cpa.3160410404
  • Ladyzhenskaya OA. Unique global solvability of the three-dimensional Cauchy problem for the Navier–Stokes equations in the presence of axial symmetry. Zap Naucn Sem Leninggrad Otdel Math Inst Steklov. 1968;7:155–177. (Russian).
  • Uchovskii MR, Yudovich BI. Axially symmetric flows of an ideal and viscous fluid. J Appl Math Mech. 1968;32:52–61. doi: 10.1016/0021-8928(68)90147-0
  • Leonardi S, Málek J, Nečas J, et al. On axially symmetric flows in ℝ3. Z Anal Anwendungen. 1999;18:639–649. doi: 10.4171/ZAA/903
  • Chae D, Lee J. On the regularity of axisymmetric solutions of the Navier–Stokes equations. Math Z. 2002;239:645–671. doi: 10.1007/s002090100317
  • Chen CC, Strain RM, Yau HT, et al. Lower bound on the blow-up rate of the axisymmetric Navier–Stokes equations. Int Math Res Notices 8. 2008;31.
  • Chen CC, Strain RM, Tsai TP, et al. Lower bound on the blow-up rate of the axisymmetric Navier–Stokes equations II. Comm Partial Diff Eqn. 2009;34:203–232. doi: 10.1080/03605300902793956
  • Koch G, Nadirashvili N, Seregin G, et al. Liouville theorems for the Navier–Stokes equations and applications. Acta Math. 2009;203:83–106. doi: 10.1007/s11511-009-0039-6
  • Kubica A, Pokorny M, Zajaczkowski W. Remarks on regularity criteria for axially symmetric weak solutions to the Navier–Stokes equations. Math Methods Appl Sci. 2012;35:360–371. doi: 10.1002/mma.1586
  • Lei Z, Zhang QS. A Liouville theorem for the axially-symmetric Navier–Stokes equations. J Funct Anal. 2011;261:2323–2345. doi: 10.1016/j.jfa.2011.06.016
  • Wei DY. Regularity criterion to the axially symmetric Navier–Stokes equations. J Math Anal Appl. 2016;435:402–413. doi: 10.1016/j.jmaa.2015.09.088
  • Zhang P, Zhang T. Global axisymmetric solutions to three-dimensional Navier–Stokes system. Int Math Res Not. 2014;2014:610–642. doi: 10.1093/imrn/rns232
  • Caffarelli L, Kohn R, Nirenberg L. Partial regularity of suitable weak solution of the Navier–Stokes equations. Comm Pure Appl Math. 1982;35:771–837. doi: 10.1002/cpa.3160350604
  • Bahouri H, Chemin J-Y, Danchin R. Fourier Analysis and Nonlinear Partial Differential Equations. Springer-Verlag; 2011. (Grundlehren dermathematischen Wissenschaften; 343).
  • O'Neil R. Convolution operators on L(p, q) spaces. Duke Math J. 1963;30:129–142. doi: 10.1215/S0012-7094-63-03015-1
  • Hajaiej H, Yu X, Zhai Z. Fractional Gagliardo–Nirenberg and Hardy inequalities under Lorentz norms. J Math Anal Appl. 2012;396:569–577. doi: 10.1016/j.jmaa.2012.06.054
  • Miao C, Zheng X. On the global well-posedness for the Boussinesq system with horizontal dissipation. Comm Math Phys. 2013;321:33–67. doi: 10.1007/s00220-013-1721-2
  • Leray J. Sur le mouvement d'un liquide visquex emplissant l'espace. Acta Math. 1934;63:193–248. doi: 10.1007/BF02547354

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.