Publication Cover
Applicable Analysis
An International Journal
Volume 99, 2020 - Issue 3
118
Views
3
CrossRef citations to date
0
Altmetric
Articles

Periodic dynamics of a derivative nonlinear Schrödinger equation with variable coefficients

, , &
Pages 407-427 | Received 04 Apr 2018, Accepted 01 Jul 2018, Published online: 17 Jul 2018

References

  • Carretero-González R, Frantzeskakis D, Kevrekidis PG. Nonlinear waves in Bose-Einstein condensates: physical relevance and mathematical techniques. Nonlinearity. 2008;21(7):R139–R202. doi: 10.1088/0951-7715/21/7/R01
  • Kivshar YS, Agrawal G. Optical solitons: from fibers to photonic crystals. San Diego: Academic Press; 2003.
  • Agrawal GP. Nonlinear fiber optics. San Diego: Academic Press; 2007.
  • Malomed B. Nonlinear Schröinger equations. In: Scott A, editor. Encyclopedia of nonlinear science. New York (NY): Routledge; 2005. p. 639–643.
  • Chen H, Lee Y, Liu C. Integrability of nonlinear Hamiltonian systems by inverse scattering method. Phys Scripta. 1979;20:490–492. doi: 10.1088/0031-8949/20/3-4/026
  • Kaup DJ, Newell AC. An exact solution for a derivative nonlinear Schröinger equation. J Math Phys. 1978;19(4):798–801. doi: 10.1063/1.523737
  • Suydam BR. Self-steepening of optical pulses. In: Alfano RR, editor. The supercontinuum laser source. New York: Springer; 2006. p. 295–317.
  • Moses J, Malomed BA, Wise FW. Self-steepening of ultrashort optical pulses without self-phase-modulation. Phys Rev A. 2007;76:021802. doi: 10.1103/PhysRevA.76.021802
  • Mjølhus E, Hada T. Soliton theory of quasi-parallel MHD waves. In: T Hada, H Matsumoto, editors Nonlinear waves and chaos in space plasmas. Tokyo: Terrapub; 1997. p. 121–169.
  • Wadati M, Sogo K. Gauge transformations in soliton theory. J Phys Soc Jpn. 1983;52:394–398. doi: 10.1143/JPSJ.52.394
  • Leta TD, Li J. Exact traveling wave solutions and bifurcations of the generalized derivative nonlinear Schrödinger equation. Nonlinear Dyn. 2016;85(2):1031–1037. doi: 10.1007/s11071-016-2741-1
  • Chow K, Ng TW. Periodic solutions of a derivative nonlinear Schrödinger equation: elliptic integrals of the third kind. J Comput Appl Math. 2011;235(13):3825–3830. doi: 10.1016/j.cam.2011.01.029
  • Nimmo J, Halis Y. On Darboux transformations for the derivative nonlinear Schrödinger equation. J Nonlinear Math Phys. 2014;21(2):278–293. doi: 10.1080/14029251.2014.905301
  • Chow KW, Yip LP, Grimshaw R. Novel solitary pulses for a variable-coefficient derivative nonlinear Schrödinger equation. J Phys Soc Japan. 2007;76(7):074004. doi: 10.1143/JPSJ.65.1971
  • Li M, Tian B, Liu W, et al. Soliton-like solutions of a derivative nonlinear Schrödinger equation with variable coefficients in inhomogeneous optical fibers. Nonlin Dyn. 2010;62(4):919–929. doi: 10.1007/s11071-010-9774-7
  • Mi L. Quasi-periodic solutions of derivative nonlinear Schrödinger equations with a given potential. J Math Anal Appl. 2012;390(1):335–354. doi: 10.1016/j.jmaa.2012.01.046
  • Dantas CC. An inhomogeneous space–time patching model based on a nonlocal and nonlinear Schrödinger equation. Found Phys. 2016;46(10):1269–1292. doi: 10.1007/s10701-016-0019-6
  • Tian B, Gao Y. Variable-coefficient higher-order nonlinear Schrödinger model in optical fibers: new transformation with burstons, brightons and symbolic computation. Phys Lett A. 2006;359(3):241–248. doi: 10.1016/j.physleta.2006.06.032
  • Lü X, Zhu H, Meng X, et al. Soliton solutions and a Bäcklund transformation for a generalized nonlinear Schrödinger equation with variable coefficients from optical fiber communications. J Math Anal Appl. 2007;336(2):1305–1315. doi: 10.1016/j.jmaa.2007.03.017
  • Zhong W, Belić M, Malomed BA, et al. Breather management in the derivative nonlinear Schrödinger equation with variable coefficients. Ann Phys. 2015;355:313–321. doi: 10.1016/j.aop.2014.12.015
  • Liu J, Yuan X. KAM for the derivative nonlinear Schrödinger equation with periodic boundary conditions. J Differ Equ. 2014;256(4):1627–1652. doi: 10.1016/j.jde.2013.11.007
  • Geng J, Wu J. Real analytic quasi-periodic solutions for the derivative nonlinear Schrödinger equations. J Math Phys. 2012;53(10):102702. doi: 10.1063/1.4754822
  • Lou Z, Si J. Quasi-periodic solutions for the reversible derivative nonlinear Schrödinger equations with periodic boundary conditions. J Dyn Differ Equ. 201729(3):1031–1069. doi: 10.1007/s10884-015-9481-7
  • Porter MA, Kevrekidis P, Malomed BA, et al. Modulated amplitude waves in collisionally inhomogeneous Bose-Einstein condensates. Phys D. 2007;229(2):104–115. doi: 10.1016/j.physd.2007.02.012
  • Liu Q, Qian D. Modulated amplitude waves with nonzero phases in Bose-Einstein condensates. J Math Phys. 2011;52(8):082702. doi: 10.1063/1.3623415
  • Torres PJ. Modulated amplitude waves with non-trivial phase in quasi-1D inhomogeneous Bose-Einstein condensates. Phys Lett A. 2014;378(45):3285–3288. doi: 10.1016/j.physleta.2014.10.008
  • Jia L, Liu Q, Ma Z. A good approximation of modulated amplitude waves in Bose-Einstein condensates. Commun Nonlinear Sci Numer Simul. 2014;19(8):2715–2723. doi: 10.1016/j.cnsns.2013.12.034
  • Porter MA, Kevrekidis PG. Bose-Einstein condensates in superlattices. SIAM J Appl Dyn Syst. 2005;4(4):783–807. doi: 10.1137/040610611
  • Kengne E, Vaillancourt R, Malomed B. Bose-Einstein condensates in optical lattices: the cubic quintic nonlinear Schrödinger equation with a periodic potential. J Phys B: At Mol Opt Phys. 2008;41:205202 (9pp). doi: 10.1088/0953-4075/41/20/205202
  • Konotop VV, Torres PJ. On the existence of dark solitons in a cubic-quintic nonlinear Schrödinger equation with a periodic potential. Commun Math Phys. 2008;282:1–9. doi: 10.1007/s00220-008-0527-0
  • Delpino MA, Manasevich RF. Infinitely many T-periodic solutions for a problem arising in nonlinear elasticity. J Differ Equ. 1993;103(2):260–277. doi: 10.1006/jdeq.1993.1050
  • Wang Z, Ma T. Existence and multiplicity of periodic solutions of semilinear resonant Duffing equations with singularities. Nonlinearity. 2012;25(2):279–307. doi: 10.1088/0951-7715/25/2/279
  • Jiang D, Chu J, Zhang M. Multiplicity of positive periodic solutions to superlinear repulsive singular equations. J Differ Equ. 2005;211(2):282–302. doi: 10.1016/j.jde.2004.10.031
  • Ding T. Approaches to the qualitative theory of ordinary differential equations. Singapore: World Scientific; 2007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.