Publication Cover
Applicable Analysis
An International Journal
Volume 99, 2020 - Issue 6
153
Views
6
CrossRef citations to date
0
Altmetric
Articles

A note on the Cauchy problem for the periodic two-component Novikov system

&
Pages 1042-1065 | Received 29 Jun 2018, Accepted 04 Sep 2018, Published online: 21 Sep 2018

References

  • Popowicz Z. Double extended cubic peakon equation. Phys Lett A. 2015;379:1240–1245. doi: 10.1016/j.physleta.2015.01.020
  • Luo W, Yin Z. Local well-posedness and blow-up criteria for a two-component Novikov system in the critical Besov space. Nonlinear Anal. 2015;22:1–22. doi: 10.1016/j.na.2015.03.022
  • Wang H, Fu Y. Non-uniform dependence on initial data for the two-component Novikov system. J Math Phys. 2017;58:021502.
  • Li J, Yin Z. Remarks on the well-posedness of Camassa–Holm type equations in Besov spaces. J Differ Equ. 2016;261:6125–6143. doi: 10.1016/j.jde.2016.08.031
  • Novikov V. Generalizations of the Camassa–Holm equation. J Phys A. 2009;42:342002.
  • Hone A, Wang J. Integrable peakon equations with cubic nonlinearity. J Phys A. 2008;41:4359–4380. doi: 10.1088/1751-8113/41/37/372002
  • Himonas A, Holliman C. The Cauchy problem of the Novikov equation. Nonlinearity. 2012;25:449–479. doi: 10.1088/0951-7715/25/2/449
  • Yan W, Li Y, Zhang Y. The Cauchy problem for the integrable Novikov equation. J Differ Equ. 2012;253:298–318. doi: 10.1016/j.jde.2012.03.015
  • Wu X, Yin Z. Well-posedness and global existence for the Novikov equation. Ann Sc Norm Super Pisa C1 Sci. 2012;11:707–727.
  • Yan W, Li Y, Zhang Y. The Cauchy problem for the Novikov equation. Nonlinear Differ Equ Appl. 2013;20:1157–1169. doi: 10.1007/s00030-012-0202-1
  • Camassa R, Holm D. An integrable shallow water equation with peaked solitons. Phys Rev Lett. 1993;71:1661–1664. doi: 10.1103/PhysRevLett.71.1661
  • Fuchssteiner B, Fokas A. Symplectic structures, their Bäcklund transformation and hereditary symmetries. Physica D. 1981/82;4:47–66. doi: 10.1016/0167-2789(81)90004-X
  • Constantin A, Lannes D. The hydrodynamical relevance of the Camassa–Holm and Degasperis–Procesi equations. Arch Ration Mech Anal. 2009;192:165–186. doi: 10.1007/s00205-008-0128-2
  • Johnson RS. Camassa–Holm, Korteweg–de Vries and related models for water waves. J Fluid Mech. 2002;455:63–82. doi: 10.1017/S0022112001007224
  • Camassa R, Holm D, Hyman J. A new integrable shallow water equation. Adv Appl Mech. 1994;31:1–33. doi: 10.1016/S0065-2156(08)70254-0
  • Constantin A. The trajectories of particles in Stokes waves. Invent Math. 2006;166:523–535. doi: 10.1007/s00222-006-0002-5
  • Constantin A. Particle trajectories in extreme Stokes waves. IMA J Appl Math. 2012;77:293–307. doi: 10.1093/imamat/hxs033
  • Constantin A, Escher J. Particle trajectories in solitary water waves. Bull Am Math Soc. 2007;44:423–432. doi: 10.1090/S0273-0979-07-01159-7
  • Lyons T. The pressure in a deep-water Stokes wave of greatest height. J Math Fluid Mech. 2016;18:209–218. doi: 10.1007/s00021-016-0249-6
  • Constantin A, Strauss W. Stability of peakons. Commun Pure Appl Math. 2000;53:603–610. doi: 10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.0.CO;2-L
  • Li Y, Olver P. Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation. J Differ Equ. 2000;162:27–63. doi: 10.1006/jdeq.1999.3683
  • Himonas A, Kenig C. Non-uniform dependence on initial data for the CH equation on the line. Differ Integral Equ. 2009;22:201–224.
  • Himonas A, Kenig C, Misiołek G. Non-uniform dependence for the periodic CH equation. Commun Partial Differ Equ. 2010;35:1145–1162. doi: 10.1080/03605300903436746
  • Danchin R. A few rearks on the Camassa–Holm equation. Differ Integral Equ. 2001;14:953–988.
  • Danchin R. A note on well-posedness for Camassa–Holm equation. J Differ Equ. 2003;192:429–444. doi: 10.1016/S0022-0396(03)00096-2
  • Tang H, Zhao Y, Liu Z. A note on the solution map for the periodic Camassa–Holm equation. Appl Anal. 2014;93:1745–1760. doi: 10.1080/00036811.2013.847923
  • Constantin A. Existence of permanent and breaking waves for a shallow water equation: a geometric approach. Ann Inst Fourier. 2000;50:321–362. doi: 10.5802/aif.1757
  • Constantin A, Escher J. Wave breaking for nonlinear nonlocal shallow water equations. Acta Math. 1998;181:229–243. doi: 10.1007/BF02392586
  • Constantin A, Escher J. On the blow-up rate and the blow-up set of breaking waves for a shallow water equation. Math Z. 2000;233:75–91. doi: 10.1007/PL00004793
  • Kenig C, Ponce G, Vega L. On the ill-posedness of some canonical dispersive equations. Duke Math J. 2001;106:617–633. doi: 10.1215/S0012-7094-01-10638-8
  • Himonas A, Misiołek G. Non-uniform dependence on initial data of solutions to the Euler equations of hydrodynamics. Commun Math Phys. 2010;296:285–301. doi: 10.1007/s00220-010-0991-1
  • Karapetyan D. Non-uniform dependence and well-posedness for the hyperelastic rod equation. J Differ Equ. 2010;294:796–826. doi: 10.1016/j.jde.2010.04.002
  • Koch H, Tzvetkov N. Nonlinear wave interactions for the Benjamin–Ono equation. Int Math Res Not. 2005;30:1833–1847. doi: 10.1155/IMRN.2005.1833
  • Constantin A, Ivanov R. On an integrable two-component Camassa–Holm shallow water system. Phys Lett A. 2008;372:7129–7132. doi: 10.1016/j.physleta.2008.10.050
  • Olver P, Rosenau P. Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support. Phys Rev E. 1996;53:1900–1906. doi: 10.1103/PhysRevE.53.1900
  • Lv G, Wang X. On the Cauchy problem for a two-component b-family system. Nonlinear Anal. 2014;111:1–14. doi: 10.1016/j.na.2014.08.010
  • Holm D, Náraigh L, Tronci C. Singular solution of a modified two-component Camassa–Holm equation. Phys Rev E. 2009;79:016601. doi: 10.1103/PhysRevE.79.016601
  • Lv G, Wang M. Non-uniform dependence for a modified Camassa–Holm system. J Math Phys. 2012;53:013101.
  • Lv G, Wang X. Non-uniform dependence on initial data of a modified periodic two-component Camassa–Holm system. J Appl Math Mech. 2013;95(5):444–456.
  • Himonas A, Misiołek G. High-frequency smooth solutions and well-posedness of the Camassa–Holm equation. Int Math Res Not. 2005;51:3135–3151. doi: 10.1155/IMRN.2005.3135
  • Bahouri H, Chemin J, Danchin R. Fourier analysis and nonlinear partial differential equations. Heidelberg: Springer; 2011. (Grundlehren der Mathematischen Wissenschaften; vol. 343).
  • Danchin R. Fourier analysis method for PDEs. Lecture Notes, 14 November 2005.
  • Schmeisser H, Triebel H. Topics in Fourier analysis and functions spaces. Chichester, New York: Wiley; 1987.
  • Chen D, Li Y, Yan W. On well-posedness of two-component Camassa–Holm system in the critical Besov space. Nonlinear Anal. 2015;120:285–298. doi: 10.1016/j.na.2015.03.016

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.