Publication Cover
Applicable Analysis
An International Journal
Volume 99, 2020 - Issue 12
1,283
Views
2
CrossRef citations to date
0
Altmetric
Articles

Asymptotic analysis of the nonsteady micropolar fluid flow through a curved pipe

&
Pages 2045-2092 | Received 11 Aug 2018, Accepted 20 Nov 2018, Published online: 12 Dec 2018

References

  • Eringen AC. Theory of micropolar fluids. J Appl Math Mech. 1966;16:1–18.
  • Lukaszewicz G. Micropolar fluids: theory and application. Boston (MA): Birkhäuser; 1999.
  • Mekheimer KH, El Kot MA. The micropolar fluid model for blood flow through a tapered artery with a stenosis. Acta Mech Sinica. 2008;24(6):637–644. doi: 10.1007/s10409-008-0185-7
  • Abdullah I, Amin N. A micropolar fluid model of blood flow through a tapered artery with a stenosis. Math Meth Appl Sci. 2010;33(17):1910–1923.
  • Srinivasacharya D, Srikanth D. Flow of a micropolar fluid through cathererized artery – a mathematical model. Int J Biomath. 2013;5(2). doi: 10.1142/S1793524511001611
  • Maddah S, Navidbahksh M, Atefi G. Continuous model for dispersion of discrete blood cells with an ALE formulation of pulsatile micropolar fluid flow in a flexible tube. J Disp Sci Tech. 2013;34:1165–1172. doi: 10.1080/01932691.2012.731646
  • Haghighi AR, Shahbazi M. Mathematical modeling of micropolar fluid flow through an overlapping arterial stenosis. Int J Biomath. 2015;08:1550056. p. 15. doi: 10.1142/S1793524515500564
  • Ahmed A, Nadeem S. Effects of magnetohydrodynamics and hybrid nanoparticles on a micropolar fluid with 6-types of stenosis. Results Phys. 2017;7:4130–4139. doi: 10.1016/j.rinp.2017.10.032
  • Marušić–Paloka E. The effects of flexion and torsion on a fluid flow through a curved pipe. Appl Math Opt. 2001;44(3):245–272. doi: 10.1007/s00245-001-0021-y
  • Marušić–Paloka E. Rigorous justification of the Kirchhoff law for junction of thin pipes filled with viscous fluid. Asymptot Anal. 2003;33:51–77.
  • Dupuy D, Panasenko G, Stavre R. Asymptotic methods for micropolar fluids in a tube structure. Math Models Meth Appl Sci. 2004;14:735–758. doi: 10.1142/S0218202504003428
  • Dupuy D, Panasenko G, Stavre R. Asymptotic solution for a micropolar flow in a curvilinear channel. Z Angew Math Mech. 2008;88(10):793–807. doi: 10.1002/zamm.200700136
  • Pažanin I. Effective flow of a micropolar fluid through a thin or long pipe. Math Probl Eng. 2011;2011:18. ID 127070. doi: 10.1155/2011/127070
  • Pažanin I. Asymptotic behaviour of micropolar fluid flow through a curved pipe. Acta Appl Math. 2011;116(1):1–25. doi: 10.1007/s10440-011-9625-7
  • Beneš M, Pažanin I. Effective flow of incompressible micropolar fluid through a system of thin pipes. Acta Appl Math. 2016;143(1):29–43. doi: 10.1007/s10440-015-0026-1
  • Panasenko G, Pileckas K. Asymptotic analysis of the nonsteady viscous flow with a given flow rate in a thin pipe. Appl Anal. 2012;91(3):559–574. doi: 10.1080/00036811.2010.549483
  • Panasenko G, Pileckas K. Asymptotic analysis of the non–steady Navier–Stokes equations in a tube structure. I. The case without boundary–layer–in time. Nonlinear Anal. 2015;122:125–168. doi: 10.1016/j.na.2015.03.008
  • Panasenko G, Pileckas K. Asymptotic analysis of the non-steady Navier-Stokes equations in a tube structure. II. General case. Nonlinear Anal. 2015;125:582–607. doi: 10.1016/j.na.2015.05.018
  • Castineira G, Rodriguez JM. Asymptotic analysis of a viscous flow in a curved pipe with elastic walls. Trends Diff Equ Appl. 201673–87.
  • Castineira G, Marušic̀-Paloka E, Pažanin I, Rodriguez JM. Rigorous justification of the asymptotic model describing a curved-pipe flow in a time-dependent domain. Z Angew Math Mech. 2018;1–39. doi:10.1002/zamm.201800154.
  • Pažanin I, Radulović M. Asymptotic approximation of the nonsteady micropolar fluid flow through a circular pipe. Math Probl Eng. 2018;2018:16. Article ID 6759876. doi: 10.1155/2018/6759876
  • Beneš M, Pažanin I, Radulović M. Rigorous derivation of the asymptotic model describing a nonsteady micropolar fluid flow through a thin pipe. Comput Math Appl. 2018;76:2035–2060. doi: 10.1016/j.camwa.2018.07.047
  • Germano M. On the effect of torsion on a helical pipe flow. J Fluid Mech. 1982;125:1–8. doi: 10.1017/S0022112082003206
  • Germano M. The Dean equations extended to a helical pipe flow. J Fluid Mech. 1989;203:289–305. doi: 10.1017/S0022112089001473
  • Galdi GP. An introduction to the mathematical theory of the Navier–Stokes equations. Vol. I. Berlin: Springer; 1994.