Publication Cover
Applicable Analysis
An International Journal
Volume 100, 2021 - Issue 7
154
Views
1
CrossRef citations to date
0
Altmetric
Articles

Numerical aerodynamic simulation of transient flows around car based on parallel Newton–Krylov–Schwarz algorithm

, ORCID Icon, &
Pages 1501-1513 | Received 13 Apr 2019, Accepted 18 Jul 2019, Published online: 28 Jul 2019

References

  • Guilmineau E. Computational study of flow around a simplified car body. J Wind Eng Ind Aerod. 2008;96(6–7):1207–1217. doi: 10.1016/j.jweia.2007.06.041
  • Ahmed SR, Ramm G, Faltin G. Some salient features of the time-averaged ground vehicle wake. SAE Technical Paper; 1984 Feb 1.
  • Guilmineau E. Numerical simulations of flow around a realistic generic car model. SAE Int J Passenger Cars Mech Syst. 2014;7(2014-01-0607):646–653. doi: 10.4271/2014-01-0607
  • Krajnovic S, Davidson L. Flow around a simplified car, part 1: large eddy simulation. J Fluid Eng. 2005;127(5):907–18. doi: 10.1115/1.1989371
  • Minguez M, Pasquetti R, Serre E. High-order large-eddy simulation of flow over the Ahmed body car model. Phys Fluid. 2008;20(9):095101. doi: 10.1063/1.2952595
  • Hemida H, Krajnovic S. Transient simulation of the aerodynamic response of a double-deck bus in gusty winds. J Fluid Eng. 2009;131(3):031101. doi: 10.1115/1.3054288
  • Serre E, Minguez M, Pasquetti R, et al. On simulating the turbulent flow around the Ahmed body: a French-German collaborative evaluation of LES and DES. Comput Fluids. 2013;78:10–23. doi: 10.1016/j.compfluid.2011.05.017
  • Ashton N, Revell A. Key factors in the use of DDES for the flow around a simplified car. Int J Heat Fluid Flow. 2015;54:236–249. doi: 10.1016/j.ijheatfluidflow.2015.06.002
  • Tsubokura M, Kerr A, Onishi K, et al. Vehicle aerodynamics simulation for the next generation on the k computer: part 1 development of the framework for fully unstructured grids using up to 10 billion numerical elements. SAE Int J Passenger Cars Mech Syst. 2014;7:1106–1118. doi: 10.4271/2014-01-0621
  • Hawkes J, Turnock SR, Cox SJ, et al. Performance analysis of massively-parallel computational fluid dynamics. Paper presented at: ICHD 2014. Proceedings of the 11th International Conference on Hydrodynamics; 2014 Oct 19–24; Singapore.
  • Cai XC, Gropp WD, Keyes DE, et al. Newton–Krylov–Schwarz methods in CFD. In: Hebeker FK, Rannacher R, Wittum G, editors. Numerical methods for the Navier–Stokes equations. Notes on numerical fluid mechanics; 1993 Oct 25–28; Heidelberg. Wiesbaden: Vieweg+Teubner Verlag; 1994. p. 17–31.
  • Hucho W, Sovran G. Aerodynamics of road vehicles. Annu Rev Fluid Mech. 1993;25(1):485–537. doi: 10.1146/annurev.fl.25.010193.002413
  • Yang C, Cao J, Cai XC. A fully implicit domain decomposition algorithm for shallow water equations on the cubed-sphere. SIAM J Sci Comput. 2010;32(1):418–438. doi: 10.1137/080727348
  • Yan Z, Chen R, Zhao Y, et al. A scalable numerical method for simulating flows around high-speed train under crosswind conditions. Commun Comput Phys. 2014;15(4):944–958. doi: 10.4208/cicp.150313.070513s
  • Chen R, Yan Z, Zhao Y, et al. Scalable domain decomposition algorithms for simulation of flows passing full size wind turbine. Commun Comput Phys. 2018;24(5):1503–1522. doi: 10.4208/cicp.scpde14.46s
  • Liao Z, Chen R, Yan Z, et al. A parallel implicit domain decomposition algorithm for the large eddy simulation of incompressible turbulent flows on 3D unstructured meshes. Int J Numer Methods Fluids. 2019;89(9):343–361. doi: 10.1002/fld.4695
  • Barker AT, Cai XC. Scalable parallel methods for monolithic coupling in fluid–structure interaction with application to blood flow modeling. J Comput Phys. 2010;229(3):642–659. doi: 10.1016/j.jcp.2009.10.001
  • Wu Y, Cai XC. A fully implicit domain decomposition based ALE framework for three-dimensional fluid–structure interaction with application in blood flow computation. J Comput Phys. 2014;258:524–537. doi: 10.1016/j.jcp.2013.10.046
  • Kong F, Cai XC. A scalable nonlinear fluid–structure interaction solver based on a Schwarz preconditioner with isogeometric unstructured coarse spaces in 3D. J Comput Phys. 2017;340:498–518. doi: 10.1016/j.jcp.2017.03.043
  • Kong F, Cai XC. Scalability study of an implicit solver for coupled fluid–structure interaction problems on unstructured meshes in 3D. Int J High Perform Comput Appl. 2018;32(2):207–219. doi: 10.1177/1094342016646437
  • Kong F, Kheyfets V, Finol E, et al. An efficient parallel simulation of unsteady blood flows in patient-specific pulmonary artery. Int J Numer Methods Biomed. 2018;34(4):e2952. doi: 10.1002/cnm.2952
  • Kong F, Kheyfets V, Finol E, et al. Simulation of unsteady blood flows in a patient-specific compliant pulmonary artery with a highly parallel monolithically coupled fluid–structure interaction algorithm. arXiv preprint arXiv:1810.04289. 2018 Oct 9.
  • Abhijeet. Grabcad webpage. 2012. Available from: https://grabcad.com/library/audi-rs5-coupe
  • Franca LP, Frey SL. Stabilized finite element methods: II. The incompressible Navier–Stokes equations. Comput Methods Appl Mech Eng. 1992;99:209–233. doi: 10.1016/0045-7825(92)90041-H
  • Chen R, Wu Y, Yan Z, et al. A parallel domain decomposition method for 3D unsteady incompressible flows at high Reynolds number. J Sci Comput. 2014;58(2):275–289. doi: 10.1007/s10915-013-9732-x
  • Eisenstat SC, Walker HF. Choosing the forcing terms in an inexact Newton method. SIAM J Sci Comput. 1996;17(1):16–32. doi: 10.1137/0917003
  • Saad Y, Schultz MH. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J Sci Comput Stat Comput. 1986;7(3):856–869. doi: 10.1137/0907058
  • Cai XC, Sarkis M. A restricted additive Schwarz preconditioner for general sparse linear systems. SIAM J Sci Comput. 1999;21(2):792–797. doi: 10.1137/S106482759732678X
  • Saad Y. Iterative methods for sparse linear systems. Philadelphia (PA): Society for Industrial and Applied Mathematics; 2003.
  • Karypis G, Kumar V. ParMETIS: Parallel graph partitioning and fill-reducing matrix ordering. University of Minnesota; 2015. Available from: http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview
  • Balay S, Abhyankar S, Adams MF, et al. PETSc users manual. Argonne National Laboratory; 2018. Available from: http://www.mcs.anl.gov/petsc
  • Braack M, Richter T. Solutions of 3D Navier–Stokes benchmark problems with adaptive finite elements. Comput Fluids. 2006;35(4):372–392. doi: 10.1016/j.compfluid.2005.02.001

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.